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Abstract 

Chemodiversity of wild populations of aromatic plants is a valuable source of essential oils, whose composition may be suitable for 

specific purposes according their biological activity. Furthermore, knowing the intrapopulational variability based on individual 

analysis has allowed characterizing atypical profiles, which can reach high levels of active compounds. Obviously, it requires the 

treatment of a high number of individual samples. In this work, a methodology to characterize T. vulgaris profiles in an area of 

recognized biodiversity was proposed and applied. After Thin Layer Chromatography (TLC) screening data of 85 individual samples, 

7 groups, and 13 individuals were classified. Then, 20 samples were subjected to GC/MS and GC/FID analysis, respectively. These 

data were subjected to Hierarchical Agglomerative, Discriminant Analysis and ANOVA, which finally highlighted five profiles: (1) based 

on the camphane skeleton (camphene, camphor and borneol), (2) rich in the oxygenated sesquiterpenic fraction, (3) rich in 1,8-

cineole, with appreciable amounts of camphor and borneol (typical chemotype from Eastern Iberian Peninsula), (4) camphor and 

terpinen-4-ol as major compounds, and (5) linalool chemotype. It should be noted that the percentages of the main compounds in 

these groups were higher than some of those described in the literature for similar chemotypes. In summary, the preliminary 

screening by TLC, grouping individuals with similar profiles, allowed establishing a quick first approximation to the chemodiversity of 

T. vulgaris in the studied area. Furthermore, the analysis of unclassified and potentially atypical individuals has also provided valuable 

information to establish the final profiles. 

Keywords: T. vulgaris, thin layer chromatography, chemodiversity, atypical individuals, wild populations 

Introduction 

Over millions of years of evolution, the nature has provided us with an enormous amount of secondary plant 

metabolites whose biological activity makes them potentially useful natural resources (Verpoorte, 1998; 

Cordell, 2000; Bakkali et al., 2008). Among them, essential oils (EOs) are particularly promising from the 

perspective of sustainability and environmental protection. Indeed, during the last two decades an extensive 

review literature is available on specific fields such as food processing and conservation (Sanchez-González 

et al., 2011; Calo et al., 2015, Anupama et al., 2019), pest and weed control in agriculture (Tworkoski, 2002; 

Tripathi et al., 2009), or aromatherapy and health care (Edris, 2007; Koo, 2017).  

Comparing the cultivation of aromatic plants for EOs production with their collection from wild populations, 

the first allows to fulfil quality requirements due to the standardization of their chemical profiles (Kindlovits 
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& Németh, 2012). On the other hand, it also contributes to improve the biodiversity conservation, especially 

as a consequence of the protection of certain species, sometimes endemic. In this way, the selection and 

domestication of plants from wild populations to create chemically uniform cultivars has been widely applied 

in numerous aromatic plants (Bernáth, 2002; Dudai, 2011). With respect to Thymus species, some 

experiences have been reported in a great diversity of environmental conditions (Salas, 2014). Concerning 

Thymus vulgaris L. (thyme), the work reported by Delpit (2000) on the clonal selection of sabinene hydrate 

rich individuals, and the improvement of its micropropagation in vitro (El-Banna, 2017), can be cited as 

representative examples.  

The high intrapopulational chemodiversity of EOs coming from wild populations of many species of aromatic 

and medicinal plants can be considered as an opportunity for finding particularly useful genotypes (Németh, 

2016). Furthermore, to study in which way each genotype is affected by environmental and ontogenetic 

factors is also required to ensure the chemical identity of new developed cultivars (Figueiredo et al., 2008).  

This methodological approach demands, beyond the study of EO chemical profiles from bulk population 

samples, a research focused on the analysis of individual plants. It has revealed the existence of atypical 

profiles, apart from the known chemotypes, which may be of particular interest for their propagation and 

cultivation (Judzentiene, 2016). Thus, the key point is how to identify these valuable profiles in such a way 

that a significant number of samples could be processed. It requires simple and fast methods to achieve a 

first path to explore the chemodiversity of wild populations. In that respect, as reported by Pothier et al., 

(2001); Taylor, (2001); Njenga, (2005); Chapman, (2009) and Franz, (2010); thin layer chromatography (TLC) 

can be considered as a useful methodology because of its simplicity, speed, reliability, economy and 

possibility of using in field conditions.  

Many recent reviews enhanced the increasing interest of thyme cultivation due to its wide range of 

applications derived from its biological activity and sensory characteristics: it is used in medical and 

pharmacological applications (Sáez, F. & Stahl-Biskup, 2002; Reddy et al., 2014; Hosseinzadeh, 2015; Miraj & 

Kiani, 2016; Kuete, 2017), and in food preservation (Embuscado, 2015), for example. On the other hand, T. 

vulgaris shows a noticeable chemical polymorphism which has been extensively studied and several main 

chemotypes based on the oxygenated monoterpenic compounds have been reported. They can be grouped 

in two main types specifically related to their potential applications: (a) phenolic, with thymol and carvacrol 

as more representative compounds, typical of milder and drier Mediterranean environment; and (b) non-

phenolic chemotypes, which are characterized by the predominance of cyclic and acyclic aliphatic oxygenated 

monoterpenes, adapted to a wider range of habitats, even to extreme climates (Kulevanova et al., 1996)  

As reported by Thomson et al. (2003), four of these non-phenolic chemotypes were found in Southern France 

and European countries (Satyal et al., 2016), defined by the predominance of geraniol, α-terpineol, thujan-

4-ol and linalool. In addition, another nonphenolic chemotype rich in 1, 8-cineole was reported as endemic 

of Iberian Peninsula (Guillem & Manzanos, 1998; Jordan et al., 2006, Torras et al., 2008), although its 

occurrence in Southern France has also been cited (Keefover-Ring, 2009). Other chemotypes based on the 

bornane skeleton (camphene, borneol and camphor) have also been reported from several countries 

(Giordani et al (2004), such as Morocco (Imelouane et al., 2009); Iran (Kazemi, 2015); Brazil (Kohiyama et al., 

2015) or Italy (Mancini et al. 2015). 

The aim of this work was to study the chemodiversity of T. vulgaris in a relatively small area located in La 

Safor, a coastal region in the Valencian Community (Spain), which is characterized by its high biodiversity due 

to the wide range of edaphoclimatic conditions. A methodological approach is proposed in order to carry out 

this type of studies. It can be summarized according the following process: 
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(1) A first stage of field work, in which a high number of individuals is selected trying to obtain a 

representative set of the different environmental conditions that can influence the composition of the EO, 

mainly altitude and orientation, due to its relationship with the possible microclimatic differences. 

(2) Screening by TLC of individual extracts. Afterwards, TLC profiles are visually grouped according the 

presence of discriminant spots, whose chemical composition is identified both by comparing with pure 

standards and preparative TLC followed by the GC/MS. Unclassified or doubtful individuals are considered as 

potentially atypical, to be subsequently independently analysed. 

(3) Once the classification has been performed, the plant material coming from the grouped and potential 

atypical individuals is subjected to hydrodistillation or simultaneous distillation extraction (SDE) according 

the amount of available material. Then, these samples are analysed by GC/MS and GC/FID. 

Material and Methods 

Area of study 

The study area was located in the Mondúver mountain, a calcareous mountainous massif. From the 

geomorphological point of view, Mondúver is a cretacic massif with Jurassic stratums, in which karstic 

landforms are widely represented. All these geographical features, together with a complex orography, give 

rise to a great diversity of microclimates and soil types, which lead to a high plant biodiversity. It covers an 

area of approximately 25 km2, where a protected natural area of 650 ha (Parpalló-Borrell) and a micro-

reserve of flora (0.95 ha) are placed, as well as a meteorological station (Barx-La Drova, 39° 0' 18.00" N, 00° 

17' 24.36" W, 379 m asl), to which the following data correspond: yearly average temperature: 15,9 ºC; yearly 

average precipitation: 928,6 mm; compensated thermicity index = 360 (Rivas, 2004). According to these data, 

this area can be classified belonging to upper thermomediterranean bioclimatic floor. As for characterizing 

its climatic conditions, it is important to indicate the irregularity of rainfall, largely influenced by the NE-SW 

orientation, with a marked summer drought and relatively frequent episodes of torrential rains (which can 

exceed 200 mm daily). In addition, frosts are not frequent (eight days a year, on average) due to maritime 

influence.  

Plant material 

The sampling of plant material was performed in such a way that different orientations and altitudes were 

considered, avoiding areas with special protection (Figure 1). Samples formed by small cuts of 85 individuals 

were collected during full flowering stage (August 2018). Each individual plant was marked in order to carry 

out possible subsequent analysis or to obtain material for its propagation. A voucher specimen of each 

individual sample was submitted to identification in the Mediterranean Agroforestry Institute (IAM) of 

Universitat Politècnica de València (UPV).  

After TLC screening, vouchers of material from grouped individuals according the similarity of their TLC 

profiles and unclassified ones were deposited at the herbarium of IAM, UPV (VALA 9581-9600). The rest of 

material was kept in sealed bags at -40 ºC for further analysis. 

It should be noted that in the studied area had been reported two species of the genus Thymus: Thymus 

piperella (phenolic, and clearly distinguishable morphologically) and T. vulgaris, of which three subspecies 

have been identified: T. vulgaris ssp. vulgaris, T. vulgaris ssp. aestivus and T. vulgaris ssp. mansanetianus, 

with certain specific morphological characteristics (Gallego et al., 2013; Mateo & Crespo, 2014).  
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Figure 1. Geographical distribution of the samples 

 

TLC screening  

Extraction 

The extraction and TLC analysis were performed according to Wagner & Bladt (1996). Small amounts of 

individual samples (0,2 g) with 2 mL of dichloromethane (Sigma-AldrichTM, for GC analysis) were subjected to 

stirring in 5 mL glass vials for 30 min. Afterwards, they were dried with anhydrous sodium sulphate and 

filtered with a syringe filter (TeknokromaTM). Dried extracts were transferred to other vials and placed opened 

in fume hoods up to total solvent evaporation. Finally, 100 L of toluene were added to each vial. They were 

sealed and kept in refrigerator at 4º C until TLC analysis.  

TLC analysis  

From each extract, 10 L were spotted with capillary tubes (Blaubrand intraMark, 10 μL) on the silica gel 

plates (DC-Fertigfolien Alugram Sil G/UV 254). They were developed in duplicate using toluene:ethyl acetate 

(93:7) as a mobile phase, and further stained with sulphuric vanillin and p-anisaldehyde (UV 265 nm), 

respectively, as stain reagents, as described by Wagner & Bladt (1996). From the visual analysis of plates, 

spots showing different colour and/or retention factor (Rf value) were marked for further validation to ensure 

their chemical identity. 

TLC method validation 

TLC plates were spotted with 25 L of sample extracts, and developed in the same conditions, but they were 

not sprayed with any visualization reagent. Silica gel layer, matching to measured range for discriminant 

spots, was scrapped and extracted with 0.5 mL of dichloromethane. The filtered extract was allowed to 

evaporate, until its volume was reduced to approximately 300 L, which was kept and sealed in 350 L insert 

vials until GC/MS analysis. These extracts were analysed by GC/MS in order to identify their composition. The 

presence of 1,8-cineole, borneol, camphor and linalool were also confirmed by comparing with pure 

standards. 



 
Nat. Volatiles & Essent. Oils, 2020; 7(3): 29-50   Llorens-Molina et al. 
DOI: 10.37929/nveo.722313   

 
 

33 
 

Characterization of chemical profiles  

SDE extraction 

Plant material coming from grouped individuals was put together and homogenized to obtain representative 

samples (5-10 g). These samples and those originated from each of the unclassified individuals, were 

subjected to simultaneous extraction distillation using a Godefroot type apparatus (De Frutos et al., 1988) 

using dichloromethane (≥99.9%, capillary GC grade, Sigma-AldrichTM) as solvent, for 3 h. The extracts were 

dried with anhydrous sodium sulphate and concentrated under reduced pressure at room temperature up 

to 1.5 mL. They were kept in sealed chromatographic vials and stored at -18ºC until GC analysis.  

GC and GC/MS analysis 

The analysis of samples was carried out by gas chromatography with flame ionization detector (GC-FID) and 

mass spectrometry (GC-MS). A Clarus 500 GC (Perkin-Elmer Inc. Wellesley. PA. USA) chromatograph 

equipped with a FID detector and capillary column ZB-5 (30 m × 0.25 mm i.d. × 0.25 μm film thickness; 

Phenomenex Inc. Torrance. CA. USA) was used for the quantitative analysis. The injection volume was 1 μL. 

The GC oven temperature was programmed from 50°C to 250°C at a rate of 3°C min−1. Helium was the carrier 

gas (1.2 mL min−1). Injector and detector temperatures were set at 250°C. The percentage composition of the 

EO was calculated from GC peak areas without correction factors by means of the software Total Chrom 6.2 

(Perkin-Elmer Inc., Wellesley. PA. USA).  

Analysis by GC-MS was performed using a Clarus 500 GC-MS (Perkin-Elmer Inc.) apparatus equipped with the 

same capillary column, carrier and operating conditions described above for GC-FID analysis. Ionization 

source temperature was set at 200°C and 70 eV electron impact mode was employed. MS spectra were 

obtained by means of total ion scan (TIC) mode (mass range m/z 45-500 uma). The total ion chromatograms 

and mass spectra were processed with the Turbomass 5.4 software (Perkin-Elmer Inc.). Retention indices 

were determined by injection of C8–C25 n-alkanes standard (Supelco, Bellefonte, PE, USA) under the same 

conditions.  

The EO components were identified by comparison of calculated retention indices and high probability 

matches according to mass spectra computer library search (NIST MS 2.0) and available data from literature 

(Adams, 2007). A shorter run was applied to identify discriminant spots. Identification of the following 

compounds was also confirmed by comparison of their experimental lineal retention index (LRI) with those 

of authentic reference standards (Sigma-AldrichTM): α-pinene, β-pinene, camphene, myrcene, limonene, (Z)-

β-ocimene, camphor, terpinolene and terpinen-4-ol.  

Statistical analysis 

All the data obtained from GC-FID analysis were processed using Statgraphic Centurion XVI. Agglomerative 

Hierarchical Clustering (Square Euclidean Distance and Wards method as aggregation criterions) was 

performed on percentages of compounds (over 5 % at least on three samples) in order to group the most 

characteristic EO profiles. Then, these data were subjected to Discriminant Analysis to validate the 

classification. 

The significance of differences among the final defined profiles was determined by means of analysis of 

variance (ANOVA) using Statgraphics 5.1. Software. Tukey’s HSD multiple-range test at P < 0.05 was used to 

find out significant differences among average values. As the original data were expressed like percentage 

(%) peak areas, they were subjected to arcsin [square root (%/100)] transformation and previously their 

homocedasticity was tested.  
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Results and Discussion  

Preliminary screening 

From the 85 individual profiles, 47 were found clearly similar, showing a pattern of spots like the one 

displayed in Fig. 2A (majority profile). Among the other ones, some groups could be visually established based 

on the presence with remarkable intensity or the absence of certain discriminant spots which are described 

in Fig. 2. Their GC/MS analysis allowed to determine their composition, so that the following groups were 

defined according the occurrence of the following representative compounds: B. Linalool (5 individuals: 

9,49,51,52,53), C. Borneol (4 individuals: 10, 56, 57, 67), D. α-Cadinol (8 individuals: 58, 60, 61, 71, 72, 

73,74,75), E. 1,8-Cineole (2 individuals: 17, 18), F. Camphor and borneol, (2 individuals: 12,65) G. 1,8-Cineole 

and borneol (4 individuals: 15, 50, 62, 66). 
 

Figure 2. TLC screening: (A) representative profiles, (B-G) discriminant spots (Rf range) and mass spectra. 
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Figure 2. (Cont.) 

 

 

 

As an example, individuals grouped according their high level of linalool are shown in Fig.3. Finally, the 

profiles of 13 individuals could not be clearly classified, so they were directly analysed by GC/MS and/or 

GC/FID. 
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Figure 3. The five individuals grouped according their high amount of linalool 

 
1: Representative TLC plate of predominant profile. 2a: stained with vanillin sulphuric. 2b: stained with anisaldehyde sulphuric. 

This screening methodology was applied to select chemotypes of Mentha longifolia (L.) Huds. from wild 

populations (Llorens-Molina et al., 2017) in order to obtain chemical homogeneous plots of this species. 

Seasonal changes of these selected accessions have been recently studied (Llorens-Molina et al., 2020). To 

the best of our knowledge, this type of methodology has not been applied so far to study the chemodiversity 

of wild populations or to identify atypical EO profiles. 

GC results 

Samples from grouped individuals 

In summary, 20 samples (one from each group A-G and the 13 non-classified individuals) were subjected to 

GC/MS and GC/FID analysis. As example, Total Ion Chromatograms (TIC) of the samples A, B, D, F are 

displayed in Figures 4-7. 
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Figure 4. Chromatographic profile (TIC) of group A (predominant composition). 

 

Figure 5. Chromatographic profile (TIC) of group B (rich in linalool). 

 
 

 

 

 

Main compounds (>0.5 % TIC peaks area): 1. Camphene (0,5 %); 2. 1,8-Cineole (2,3 %); 3. -Terpinene (0,7 %); 4. 

(Z)-linalool oxide furanoid (2,0 %); 5. (E)-linalool oxide furanoid (3,5 %); 6. Linalool (78,6 %); 7. Camphor (1,4 %); 8. 

Borneol (1,0 %); 9. Terpinen-4-ol (4,5 %); 10. -terpineol (0,5 %); 10. Isobornyl acetate (0,5 %); 11. Spathulenol (0,9 

%) 
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Figure 6. Chromatographic profile (TIC) of group D (rich in oxygenated sesquiterpenes). 

 

Figure 7. Chromatographic profile (TIC) of group F (rich in camphene, 1,8-cineole, camphor and borneol). 
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As aforementioned, the individuals not matching any of the established groups were independently 

subjected to GC-MS and GC-FID analysis. Figure 8 shows an atypical profile highly rich in 1,8-cineole.  

Figure 8. Chromatographic profile (TIC) of an atypical individual highly rich in 1,8-cineole 

 

GC analysis 

The composition of the 20 processed samples (one from each of the seven groups and the 13 non-classified 

individuals) expressed as percentage (%) peak areas in FID chromatograms, is detailed in Tables 1 and 2.  

A total of 73 compounds were identified accounting for 88.7-99.6 % of the entire area. The major profile, 

grouping 47 individuals, contained as main constituents: camphene (17 %), camphor (46.4 %) and borneol 

(11.5 %). This profile was found very similar to that reported by Imelouane et al. (2009) from Morocco. The 

group B, as well as the non-classified individuals: 2, 3, 4, 5, 8, exhibited a high amount of linalool (48.3-80.6 

%). This composition could be related to chemotype linalool (Thomson et al. ,2003; Giordani et al., 2004). 

Other well-defined profile was E, which represents the 1,8-cineole chemotype, typical of Eastern Iberian 

Peninsula. The non-classified individual 1 could be characterized by its high amount of oxygenated 

sesquiterpenic fraction (-cadinol, 43.5 % and epi-α-cadinol, 9.8 %). The profile D showed some similarity 

with this composition (34.4 % oxygenated sesquiterpenes). The rest of groups and the non-classified 

individuals represented different relative rates of pinene isomers, camphene, camphor, linalool, borneol, 

terpinen-4-ol and oxygenated sesquiterpenic fraction (considered as a whole, which main constituents were 

found spathulenol and cadinol isomers).  

For a more accurate classification, the aforementioned components accounting for more than 5% in at least 

three samples, were taken as variables for the Hierarchical Clustering and the Discriminant Analysis. 

Camphene was not considered because it was highly correlated with camphor (r = 0.96).  
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The Cluster analysis (Fig. 9) allowed to propose a first classification to be validated by Discriminant Analysis. 

The samples were grouped as follows: 1. A, C, F, NC11; 2. D, NC1, NC10; 3. E, G, NC12, NC13; 4. NC6, NC7, 

NC9; 5. B, NC2, NC3, NC4, NC5, NC8. 

Table 1. Chemical composition of grouped samples of Thymus vulgaris L coming from Mondúver area (La Safor, València, 

Spain) 

Compounds    Grouped individual samples (% peak areas) 

 
 

Id. b LRIc 

LRI 
(lit.)d 

A B C D E F G 

Tricyclene 1,2 920 921 0.7 0.2 0.7 0.3 0.3 0.9 0.7 

-Thujene 1,2 924 924 0.3 0.5 0.3 0.1 0.2 0.3 0.3 

-Pinene 1,2,3 931 932 4.9 0.6 5.9 6.6 2.7 6.6 6.1 

Camphene 1,2,3 946 946 17.0 1.8 15.1 6.1 0.9 16.9 11.6 

Sabinene 1,2 969 969 0.2 0.2 0.1 2.7 2.6 0.2 0.8 

-Pinene 1,2,3 975 974 1.2 0.4 1.2 0.4 5.4 1.3 2.5 

1-Octen-3-ol 1,2 979 974 0.1 0.3 0.1 0.2 t 0.1 0.1 

3-Octanone 1,2 984 979 -e tf t - 0.3 t t 

Myrcene 1,2,3 989 988 1.2 0.8 1.0 0.6 3.7 1.2 2.4 

3-Octanol 1,2 998 994 - t t - - - - 

-Phellandrene 1,2 1003 1002 t 0.1 - - t - - 

-Terpinene 1,2,3 1016 1014 0.2 0.5 0.2 0.3 t 0.3 0.2 

p-Cymene 1,2,3 1022 1020 1.1 1.3 0.8 - 0.2 1.2 0.6 

Limonene 1,2,3 1026 1024 1.9 1.0 2.5 1.4 - 3.2 - 

1,8-Cineole 1,2,3 1028 1026 3.4 3.3 0.2 2.1 56.0 0.4 25.8 

cis--Ocimene 1,2 1035 1032 0.1 0.2 0.1 1.3 - 0.2 0.1 

trans--Ocimene 1,2 1046 1044 0.5 0.4 1.0 0.6 0.5 2.1 1.0 

-Terpinene 1,2,3 1055 1054 0.5 1.3 0.5 0.6 0.7 0.8 0.5 

cis-Sabinene hydrate 1,2 1069 1065 0.5 3.9 0.5 0.2 0.8 0.7 0.5 

Camphenilone 1,2 1079 1078 0.2 - 0.2 0.2 - 0.2 0.1 

Terpinolene 1,2,3 1083 1086 0.1 2.9 0.1 0.5 0.2 0.2 0.1 

trans-Linalool oxide (furanoid) 1,2 1085 1084 t - - - - - - 

Linalool 1,2 1100 1095 0.3 61.3 1.4 0.5 0.8 0.3 0.6 

-Campholenal 1,2 1121 1122 0.1 0.3 0.3 0.3 0.2 0.5 0.3 

Camphor 1,2,3 1144 1141 46.4 2.1 43.5 19.9 t 41.3 27.5 

Sabina ketone 1,2 1152 1154 0.1 - 0.1 0.7 0.1 0.1 t 

Pinocarvone 1,2,3 1159 1160 0.3 - 0.2 0.2 0.4 0.2 0.2 

Borneol 1,2,3 1170 1165 11.5 4.9 12.1 3.7 4.0 10.1 6.7 

Terpinen-4-ol 1,2,3 1177 1174 2.3 4.1 2.4 2.0 1.8 2.9 2.0 

-Terpineol 1,2 1192 1186 0.5 0.7 0.4 0.5 6.9 0.6 2.1 

Dodecane 1,2 1203 1204 0.1 t t 0.7 0.2 0.1 0.1 

Isobornyl methanoate 1,2 1223 1223g 0.1 0.1 0.8 - 0.1 0.2 0.1 

Carvone 1,2 1237 1239 0.1 - - 0.4 0.1 0.1 t 

Linalool acetate 1,2 1254 1254 - 0.1 - - - - - 

Isobornyl acetate 1,2 1280 1283 1.0 0.4 1.6 2.4 0.1 1.4 0.6 

-Terpinyl acetate 1,2 1309 1316 - - - - 0.4 - 0.1 
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-Elemene 1,2 1334 1335 - - 0.2 0.6 0.8 - 0.1 

Isobornyl propanoate 1,2 1381 1383 - - 0.1 - - - t 

-Bourbonene 1,2 1381 1387 0.1 0.3 0.3 - 0.2 0.2 0.2 

-Caryophyllene 1,2,3 1413 1417 - 0.2 0.3 - 0.4 0.4 0.5 

-Copaene 1,2 1422 1430 - - t - - - t 

Aromadendrene 1,2 1430 1439 - t - - - - t 

-Humulene 1,2 1449 1452 - - - - - - - 

Alloaromadendrene 1,2 1458 1458 - - - - - - - 

Isobornyl n-butanoate 1,2 1471 1473 0.1 - 0.2 - - 0.1 0.1 

Germacrene D 1,2 1476 1484 0.3 0.1 0.5 - - 0.3 0.3 

Bicyclogermacrene 1,2 1490 1500 - 0.3 0.8 0.2 0.1 0.4 0.8 

-Muurolene 1,2 1494 1500 0.1 - - - - - 0.1 

-Cadinene 1,2 1508 1513 - - - 4.0 - 0.1 0.1 

-Cadinene 1,2 1512 1522 - 0.1 - 0.1 - 0.1 - 

Isobornyl 3-methylbutanoate 1,2 1520 1521 - - 0.1 - - 0.2 t 

Isobornyl 2-methylbutanoate 1,2 1524 1524 - - - - - - - 

-Calacorene 1,2 1542 1544 - 0.7 - 0.2 1.3 0.1 - 

Elemol 1,2 1545 1548 - - - - - - - 

Amorph-4-ene <1α,10α-epoxy-> 1,2 1559 1572 - - - 0.2 t - t 

Spathulenol 1,2 1570 1577 1.6 2.8 2.9 2.2 0.7 1.9 3.0 

Caryophyllene oxide 1,2 1576 1582 0.2 - - 0.4 - t - 

-Oplopenone 1,2 1600 1607 - t t 0.3 - - t 

Cubenol <1,10-di-epi> 1,2 1610 1618 - t - 4.2 - t t 

-Muurolol 1,2 1623 1644 t 0.2 0.1 - 0.5 0.1 t 

epi--Cadinol 1,2 1638 1638 t - - 12.9 0.1 0.5 0.1 

-Eudesmol 1,2 1640 1652 - - - - - - - 

-cadinol 1,2 1650 1652 - 0.8 - 1.7 1.9 0.3 0.2 

cis-Calamenen-10-ol  1,2 1659 1660 - 0.2 - 0.4 - - - 

Elemol acetate 1,2 1670 1680 - - - - - - - 

Eudesma-4(15),7-dien-1--ol 1,2 1676 1687 - - 0.1 4.2 0.1 t 0.1 

Eudesm-7(11)-en-4-ol 1,2 1683 1700 - 0.1 0.1 2.5 - 0.2 t 

Muurol-5-en-4-one <cis-14-nor-> 1,2 1692 1688 - - - 0.1 - - t 

Isobicyclogermacrenal 1,2 1725 1733 - - - 0.5 - - - 

Cyclocolorenone 1,2 1732 1759 - - - 3.0 - 0.1 t 

1-Octenyl acetate 1,2 1108 1110 - - - 0.1 - - - 

(2Z)-Hexenyl isovalerate 1,2 1234 1241 - 0.2 0.1 0.2 0.2 0.1 0.1 

Manool oxide 1,2 1959 1987 - 0.1 0.1 0.1 0.1 t t 

Grouped compounds           

Hydrocarbon monoterpenes    29.8 12.1 29.4 21.5 17.5 35.3 26.8 

Oxygenated monoterpenes    66.9 81.2 64 33.1 71.7 59.1 66.7 

Hydrocarbon sesquiterpenes    0.4 1.7 2.0 5.0 2.8 1.6 2.0 

Oxygenated sesquiterpenes    1.9 1.6 3.3 34.2 4.6 3.2 3.5 

Other    0.2 0.6 0.3 1.4 0.7 0.3 0.4 

Total identified    99.0 99.0 99.1 93.4 95.8 99.4 99.2 
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Table 2. Chemical composition of individual samples (no classified) of Thymus vulgaris L coming from Mondúver area 

(La Safor, València, Spain). The listed compounds and therefore the identification methods and the LRI values are the 

same as in Table 1 Unclassified individual samples (% peak areas) 

Compound NC1 NC2 NC3 NC4 NC5 NC6 NC7 NC8 NC9 
NC 

10 

NC 

11 

NC 

12 

NC 

13 

Tricyclene - - - - 0.0 0.2 0.1 0.0 0.0 0.4 0.3 0.0 0.2 

-Thujene - - - - t 1.0 0.5 - 1.3 0.3 0.2 0.2 0.8 

-Pinene 1.3 0.3 0.1 0.3 0.1 5.7 2.1 0.1 5.0 4.7 3.1 2.3 2.0 

Camphene 0.3 - 0.1 0.2 0.0 17.7 11.6 0.3 15.8 8.7 9.0 2.8 0.7 

Sabinene - - - - - t 0.1 - 0.2 5.6 0.1 0.7 1.3 

-Pinene 6.0 0.7 0.1 0.6 0.2 0.2 0.1 - 1.1 0.3 0.7 2.0 2.6 

1-Octen-3-ol - - - 0.9 - 1.3 0.9 t 0.1 - 0.1 - t 

3-Octanone - - - - - - - - 0.1 - - - - 

Myrcene 0.8 1.1 1.1 0.1 0.4 0.1 - t 0.9 0.6 0.5 0.5 1.6 

3-Octanol - - - - - - - - t - - - - 

-Phellandrene - - - 1.6 - 1.1 0.6 0.1 t - - - - 

-Terpinene 0.1 - - - t 0.5 0.2 0.1 0.5 0.4 - - 0.2 

p-Cymene 0.6 t t - t - - - 1.6 3.2 1.0 1.3 2.0 

Limonene 2.0 1.1 0.9 t 0.7 2.3 1.0 t - 2.3 2.7 3.1 1.6 

1,8-Cineole 0.7 17.3 3.6 26.5 4.3 5.5 6.5 1.3 4.5 1.3 1.5 36.9 38.6 

cis--Ocimene - - 1.4 - - 0.1 0.1 - 0.2 - - - - 

trans--Ocimene 3.9 1.2 t - t 0.5 0.5 t 1.3 0.7 0.7 - - 

-Terpinene 0.3 - 0.1 0.1 0.2 0.9 0.4 - 1.0 0.9 0.7 0.8 3.0 

cis-Sabinen hydrate 0.2 0.3 0.8 1.0 1.4 0.7 0.3 1.3 0.7 0.8 1.4 1.8 8.5 

Camphenilone - - - - - - - - 0.5 - 0.2 - - 

Terpinolene - 0.2 0.5 - 0.4 0.2 0.2 1.0 0.1 - 0.4 - 0.3 

trans-Linalool oxide 
(furanoid) 

- - - 0.3 - t - - - - - - - 

Linalool 0.1 63.3 76.7 48.3 79.2 0.9 1.6 80.6 t 0.5 13.8 4.3 13.1 

-Campholenal - t t - - 0.1 0.6 - t - 0.2 - 0.6 

Camphor 1.3 t 1.0 0.4 t 36.3 42.0 1.3 41.1 27.5 35.4 11.5 2.6 

Sabina ketone - - - - - - - - - 1.5 - - - 

Pinocarvone - - - - - 0.1 0.1 - - 0.2 - - - 

Borneol 0.2 t 0.4 2.9 0.6 0.1 0.1 0.4 0.2 5.4 11.4 4.9 2.2 

Terpinen-4-ol 0.6 - 0.6 - 0.6 13.2 17.5 - 17.0 2.7 3.3 2.6 8.6 

-Terpineol - - - 0.4 - 3.0 2.1 0.2 0.6 0.2 0.5 2.2 3.3 

Dodecane - - - - - - - - 0.2 0.5 0.2 - - 

Isobornyl methanoate - - - - - - - - 0.2 - 0.9 0.1 1.0 

Carvone - - - - - - - - 0.2 - - - - 

Linalool acetate t - - - 0.1 0.1 - - - - - - - 

Isobornyl acetate 0.1 - - 0.3 - 1.3 1.4 - 1.5 1.3 1.5 0.5 - 

-Terpinyl acetate - - - - - - - - - - - 0.8 - 

-Elemene - - - - 0.4 - - - - 0.3 - 2.0 0.1 

Isobornyl propanoate - 1.1 0.4 - 0.6 0.1 - - t - - - - 

-Bourbonene - - - 0.6 - 0.2 0.6 0.7 0.1 - - - - 
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-Caryophyllene - 1.1 2.1 - 1.3 0.2 0.2 0.0 0.2 - - 0.4 - 

-Copaene - - - 0.7 - 0.3 0.4 1.3 - - - - - 

Aromadendrene - - - - - - - 0.1 - - - - - 

-Humulene - - - - - - - 0.2 - - - - - 

Alloaromadendrene 1.0 - - 0.3 - 0.1 0.3 0.2 - - - - - 

Isobornyl n-butanoate - - - - - 0.3 t - 0.2 - 0.2 - - 

Germacrene D 1.0 4.3 1.3 2.2 1.9 0.1 0.2 0.4 0.1 - - - - 

Bicyclogermacrene 0.2 0.7 1.3 - 2.2 - - - 0.2 - 0.4 - - 

-Muurolene - - - 1.0 - 0.5 0.4 0.8 0.1 - - - - 

-Cadinene 10.4 0.8 - - - - - 0.2 - 0.7 - - - 

-Cadinene - - - - - - - - - - - - - 

Isobornyl 3-
methylbutanoate 

- - - - - - - - 0.2 1.9 0.2 0.4 - 

Isobornyl 2-
methylbutanoate 

0.8 - - 0.2 - - 0.1 0.2 - - - - - 

-Calacorene - - - - - - - - - - - - - 

Elemol - - 4.4 - 1.3 - - - - - - - - 

Amorph-4-ene 
<1α,10α-epoxy-> 

- 1.3 - 1.4 - - - 0.6 - 0.6 - - - 

Spathulenol 0.3 0.2 0.4 0.4 0.9 2.8 4.1 5.1 2.2 3.6 3.8 3.2 1.5 

Caryophyllene oxide - 0.4 0.8 0.2 0.4 0.6 1.2 1.2 - 0.8 - - - 

-Oplopenone - - - - - - - - - 3.3 1.3 6.3 0.4 

Cubenol <1,10-di-epi> - - - - - - 0.1 0.1 - - - - - 

-Muurolol - - - - - - - - 0.1 - - - - 

epi--Cadinol 9.8 0.1 - 0.8 - - - 0.2 - 8.7 - - - 

-Eudesmol - - 0.2 - - 0.1 0.1 t - - - - - 

-cadinol 43.5 3.2 - 3.6 - - 0.1 0.1 - 0.7 - 0.1 - 

cis-Calamenen-10-ol  2.9 0.1 0.3 0.7 0.1 - 0.3 1.1 - - - - - 

Elemol acetate 0.3 - 0.8 - 0.2 - - - - 2.0 - - - 

Eudesma-4(15),7-dien-

1--ol 
- - - 0.3 - - - - - 2.1 - - - 

Eudesm-7(11)-en-4-ol - - 0.2 0.5 - - - - - - 0.2 - - 

Muurol-5-en-4-one 
<cis-14-nor-> 

- - - - - - - - - - - - - 

Isobicyclogermacrenal - - - - - - - - - 2.3 - - - 

Cyclocolorenone - - - - - - - - - - - - - 

1-Octenyl acetate - - - - - t - - t - - t - 

(2Z)-Hexenyl 
isovalerate 

- - - - 1.3 0.4 0.4 - t 0.9 0.2 - 1.0 

Manool oxide - - - - - - - - t - 0.8 2.1 0.9 

Grouped compounds              

Hydrocarbon 
monoterpenes 

15.3 4.6 4.4 3.0 2.1 30.3 17.4 1.6 28.9 28.1 19.3 13.6 16.2 

Oxygenated 
monoterpenes 

3.2 82 83.5 80.1 86.8 61.7 72.2 85.1 66.7 41.4 70.3 65.6 78.5 

Hydrocarbon 
sesquiterpenes 

12.6 6.9 4.7 4.6 5.8 1.5 2.0 3.7 0.6 1.0 0.4 2.4 0.1 
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Oxygenated 
sesquiterpenes 

57.5 5.4 7.1 8.0 2.9 3.5 5.9 8.4 2.3 24.3 5.3 10.3 1.8 

Other - - - 0.9 1.3 1.7 1.3 t 0.5 1.4 1.4 2.2 1.9 

Total identified 88.7 98.9 99.6 96.6 98.9 98.3 98.7 98.9 99.1 97.6 96.8 93,6 98.6 
aCompounds listed in order of elution on DB5 column; bMethod of identification: 1. MS spectra, 2. LRI, 3. Co-injection with pure 

standards, cExperimental linear retention index; dLinear retention index according Adams (2007); eNo detected; fTraces (peak area < 

0.05 %); gCao et al. (2011) 

Figure 9. Dendogram of Hierarchical Clustering of selected variables 
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Figure 10. Grouped samples according the two first discriminant functions. Relative eigenvalue percentage: F1: 70,40 

%; F2: 17,36 % (P = 0.0000). 

 

Both F1 and F2 allows to consider well established differences among the defined groups according (Wilks) 

values: F1 ( = 0,00005, p=0,0000), F2 ( = 0,003, p = 0,0000), (100 % samples well classified). Standardized 

coefficients for both factors are the following: 

F1= 0,487*1,8-cineole - 0,642*Camphor + 1,101*Borneol - 0,581*Terpinen-4-ol - 0,062*Oxygenated 

sesquiterpenes - 0,078*+ pinene - 1,278*Linalool 

F2= 1,055*1,8-cineole + 0,831*Camphor – 0,624*Borneol + 0,630*Terpinen-4-ol -0,032*Oxygenated 

sesquiterpenes +0,335*+ pinene +0,950*Linalool 

Based on the selected variables for cluster classification, a discriminant analysis (AD) was performed in order 

to evaluate it. The first two factors explained 87,8 % of the variability.  

According F1 and F2 coefficients, borneol, 1,8-cineole and linalool were the most powerful discriminant 

compounds in order to define the EO profiles. The relationships camphor-borneol and camphor-terpinen-4-

ol in each one of the factors expressed clearly the presence of two well defined profiles in which camphor 

and each one of these two compounds were the dominant ones.  

The best defined profile can be related with the chemotype linalool as expressed when the coefficients values 

in both factors are compared. The same, but in a less pronounced way, can be said of 1,8-cineole. Oxygenated 

sesquiterpenes showed negative and low coefficients in both factors, constituting also a well classified group. 

On the other hand, + pinene did not seem to be relevant as discriminatory compounds. The composition 
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of the final defined profiles and the significance of the contributions of the main compounds is displayed in 

Table 3. 

Table 3. Average amounts of considered variables of groups defined from Cluster Analysis. Different letters on the same 
row mean significant differences according the Tukey’s HSD test, (P <0.05) 

 GROUP CLUSTER 

Compounds 1 2 3 4 5 

+ Pinene 6,2±1,8 a 6,4±1,2 a 6,4±2,2 a 4,7± 2,2 a 0,6±0,4 b 

1,8-Cineole 1,4 ± 1,5 b 1,4 ± 0,7 b 39,3 +12,5 a 5,5±1,0 b 9,4±10,2 b 

Linalool 3,9±6,6 b 0,4±0,3 b 4,7±5,9 b 0,8±0,8 b 68,2±12,8 a 

Camphor 41,7± 4,6 a 16,2±13,5 b 10,4±12,4 bc 39,8±3,1 a 0,8±0,8 c 

Borneol 11,3 ± 0,8 a 3,1±2,6 bc 4,4±1,8 b 0,1±0,1 d 1,6±1,9 cd 

Terpinen-4-ol 2,7 ± 0,5 b 1,8±1,0 b 3,7±3,3 a 15,9±2,4 b 0,9±1,6 a 

Oxygenated 
sesquiterpenes 

3,4±1,4 b 38,8±17,0 a 5,0±3,7 b 3,9 ± 1,9 b 5,6±2,8 b 

 

The profiles A, C, F and NC 11 (group 1) could be considered as major profiles. In this case, the preliminary 

screening did not allow for significant distinctions, probably due to differences in the concentration of the 

plant extracts subjected to the TLC analysis. As displayed in Table 1, these samples also exhibited important 

amounts of camphene (9,0 %-16,9 %). This way, group 1 could be considered as the representative profile 

based on the camphane skeleton (camphene, camphor and borneol as the most important components). If 

compared profile A (predominant in terms of number of individuals) with that described by Imelouane et al. 

(2009), a higher content of the major compounds was in general observed (17.0%; 46.4% and 11.5% versus 

17.19%, 38.54% and 4.92% of camphene, camphor and borneol, respectively). 

The group 2 exhibited a relative high amount of sesquiterpenic fraction including NC1, which could be 

considered as an atypical individual because of its great amount of cadinol isomers. To the best of our 

knowledge, a similar profile has not been referred to so far in thyme. Only samples accounting up to 14,1 % 

of -cadinol were reported by Mancini et al. (2015) in phenolic (thymol) T. vulgaris. It is also worth mentioning 

its reported pharmacological applications (Zygmunt et al., 1993). 

The group 3 was characterized by its high rate of 1,8-cineole, although profile C showed a noticeable amount 

of camphene and camphor. This profile was mostly observed in a previous study with samples from the East 

of the Iberian Peninsula (Teruel and Valencia) (Llorens et al., 2017). On the other hand, the content of 1,8-

cineole raised up to 56,0 % in sample E, whereas it accounted for a 36,42 % as reported by Jordán et al. (2006) 

on Spanish T. vulgaris, chemotype 1,8-cineole. 

The composition of the group 4 exhibited a noticeable presence of terpinen-4-ol, which was not considered 

in the preliminary screening. It may explain why these individuals were not classified. Its composition could 

be considered as a specific chemotype: camphor, terpinen-4-ol. It is important referring to the composition 

described by Quesada et al. (2016) in an oil marketed by a company located close to the area studied. Its 

composition (camphene (4,78 %); 1,8-cineole (12,3 %), camphor (11,23 %), terpinen-4-ol (5,50 %), borneol 

(8,87 %)) seems to be balanced between those described for groups 3 and 4. 

The group 5 was the best-defined and it can be clearly related to the chemotype linalool, already cited above 

(Thomson et al., 2002), the same way that the reported samples from Catalonia (Spain) (Torras et al., 2007), 



 
Nat. Volatiles & Essent. Oils, 2020; 7(3): 29-50   Llorens-Molina et al. 
DOI: 10.37929/nveo.722313   

 
 

47 
 

in which the variation range of linalool was 32.92 - 74.55% versus 48.3 - 80.6% found in this group. This 

increase could be attributed to the prior selection of individuals. 

As mentioned when describing the plant material, it should be noted that in the studied area three T. vulgaris 

subspecies have been reported: T. vulgaris ssp vulgaris, T. vulgaris ssp. aestivus and T. vulgaris ssp. 

mansanetianus. Nevertheless, the composition reported of T. vulgaris ssp. aestivus collected in a close 

geographical area (1,8-cineol (22.18%), geraniol (17.43%) and geranyl acetate (20.01%) as major compounds) 

is quite different to profiles identified in this work (Blazquez et al., 1990). No information has been described 

when regards to the chemical composition of T. vulgaris ssp. mansanetianus EO.  

Conclusion 

From the final classification obtained through the statistical treatment of the results, the validity of the 

preliminary TLC screening has been proved as a useful tool to carry out a first classification of the individuals 

studied. In spite of the difficulties derived from the similarity between the colours and the Rf values of the 

spots corresponding to the main compounds, the most notable differences among the EO profiles could be 

identified. 

On the other hand, it should be noted that the aforementioned difficulties led to validate the identification 

of the spots by preparative TLC and GC/MS, instead of the simple comparison with the development of the 

plates with reference pure standards. In this way, it was possible to group the 85 individuals so that those 

with a similar profile were part of a single sample. Thus, taking into account that individuals which could not 

be clearly classified were analysed independently, the number of samples to be processed could be reduced 

from 85 to 20. Moreover, this prior classification gives a first orientation about the relative abundance of 

each profile in the population.  

Finally, after the statistical treatment of the data, five profiles were defined. As it has been demonstrated by 

comparing the range of variation of the main compounds in the defined groups and those reported from 

studies on non-phenolic samples of T. vulgaris, a more defined composition can be observed in terms of the 

proportion of the major components. Insofar as these compounds are related to potentially applicable 

biological activities, this fact leads to consider the interest of individual screening of populations in order to 

identify valuable genotypes to create more profitable cultivars. 

Another interesting aspect of this methodology is that certain compounds of interest can be obtained with 

similar percentages in more advantageous species from the agronomic point of view, as can happen, for 

example, with linalool-rich oils. 

The results of this work may be the starting point for further investigations, for example, to establish the 

possible taxonomic implications of the identified profiles in relation to the different subspecies of T. vulgaris 

present in the area. Moreover, given that the established groups of individuals as well as those considered 

atypical are localized, those with the greatest potential interest could be propagated. 
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