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Abstract  

New participants in the cloud ecosystem are large MapReduce clusters, often managing petabytes of unstructured and semi-

structured data. Increasing the use of these MapReduce clusters is a big problem. This work considers a subset of production 

workloads that consist of independent MapReduce jobs. The order in which these activities are executed has a considerable impact 

on overall processing time and cluster resource use, according to our findings. Our goal is to automate the creation of  work plans 

that reduce the  time it takes to complete a series of MapReduce processes (span creation).This work present Balanced Pools, a 

novel abstraction framework and algorithm for building an optimum task schedule based on the performance features of 

MapReduce processes in a given workload. Simulations of a realistic workload show that simply processing the jobs in the 

appropriate order can enhance make span by 15% to 38%. The data supplied to the cloud is the responsibility of the Cloud Services 

Provider (CSP). The main disincentive to using cloud services is the risk of strangers seeing stored data and using sensitive raw data. 

As a result, Data Security (DS) and privacy are the primary concerns that obstruct the adoption of the CC. There are numerous 

strategies for ensuring data secrecy, but none of them totally protect the data. To overcome these shortcomings, this paper 

provides a Modified Elliptic Curve Cryptography (MECC) technique to protect your data from hostile attacks 

Keywords: Data Security, Elliptical Curve Cryptography, Cloud Services, Minimized Makespan, MapReduce. 

Introduction 

The term "Big Data" refers to a collection of massive datasets that can't be processed with traditional 

computer methods. The administration of massive amounts of varied data formats (structured and 

unstructured data) that are too large to process using traditional databases and software technologies is 

referred to as big data. 

Five essential terms define the properties of big data: 

a) Variability: Data who’s meaning changes over time is referred to as "variability". 

b) Velocity: This relates to how quickly data is created and processed in order to satisfy demand. 

c) Volume: The storage of transactional data, live streaming data, and data acquired by sensors, 

among other things, all contribute to the growth of volume. 

d) Complexity: When data is gathered from a variety of sources, the data's complexity must be taken 

into account. 

e) Variety: Standard databases, text documents, emails, video, audio, transactions, and more forms 

are increasingly used to store data. 

There is use of big data to analyze massive data sets in order to discover economic trends, determine 

research quality, anticipate disease transmission, and combat crime, among other things [1]. Retail, 

manufacturing, healthcare, pharmaceuticals, aviation, telecommunications, Banking, financial services, 

energy, life science, and many other industries use big data. Big data is defined by three Vs, according to 

industrial data analyst Doug Laney: volume, velocity, and variety. The five V's is shown in fig. 1. 
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Figure 1. Big data multi-V’s model. 

Big data analysis is divided into four parts, referred to as the four A's: action, analysis, acquisition, and 

assembly. By conserving time and lowering processing expenses, problems of high computational cost, 

speed and efficiency can be tackled. We need to lower the volume of data being processed, which we may 

do by minimizing the feature of big data processing. A Feature Selection (FS) strategy can be used to reduce 

the amount of data that is stored. FS has an impact on performance and allows for quicker decisions. FS 

determines which characteristics should be used to improve performance [2]. 

Whale Optimization Algorithm (WOA) 

The Whale Optimization Algorithm (WOA) is swarm-based algorithms and this algorithm is inspired by a 

humpback whale's hunting method of using a bubble net. WOA is commonly divided into two categories: 1) 

exploration and 2) exploitation. WOA was regarded to have a lot of potential for identifying the optimum 

global answer rapidly while avoiding local optima. This is owing to their outstanding ability to move 

smoothly from exploitation to exploration. According to prior research, it can handle a variety of real-world 

difficulties, such as optimal scaling of renewable resources for loss reduction in feature selection, data 

clustering, skeletal structure sizing optimization and distribution systems,. Because WOA's advantages are 

clear, many academics prefer it to other algorithms when dealing with complicated optimization problems. 

WOA, on the other hand, has a similar fault in that it is slow when compared to other SI algorithms in terms 

of convergence rate. When applied to a large-scale assignment, WOA performance suffers due to the 

requirement for a significant computer effort. In the problem of water resource allocation optimization, it 

highlighted a WOA fault. As the number of repetitions grows, WOA has a slow convergence rate. They 

started with a 180-time set and increased it by 2000 times, but they were unable to achieve the expected 

convergence rate. Algorithm 1 fully represents the WOA pseudocode. 
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MapReduce 

In a distributed setting, MapReduce is a programming model for constructing scalable, fault-tolerant 

parallel programmes. In this paradigm, the Map and Reduce functions combine to provide a divide-and-

conquer component. The work is distributed among a cluster of heterogeneous commodity processors in 

MapReduce to achieve parallelization. 

On the other hand, the Apache Hadoop project is a Java-based open-source MapReduce implementation. 

Academics have long used Apache Hadoop because of its MapReduce capabilities, which make it simple to 

employ in areas like, bioinformatics, machine learning, and text mining. In addition, when it comes to 

spreading EAs, MapReduce gets a lot of attention. The builder of a Map and Reduce structure just needs to 

develop the core algorithm. This will motivate them to concentrate entirely on the algorithm rather than on 

the management of distributed implementations. 
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Figure 2. Hadoop Map Reduce Architecture 

Figure 2 depicts the map reduction architecture, which comprises mostly of two processing phases. The 

Map stage is the first, and the Reduce stage is the second. The actual MR process takes happening in task 

tracker. Between the map and decreasing stages, there will be an intermediate phase. The intermediate 

phase will conduct shuffle and sort operations on the mapper output data. On the local file system, the 

intermediate data will be preserved. 

Literature Review: 

Traganitis et al. [5] presented two types of kernel-based K-means clustering for massive data clustering are 

sketch and validate. Batch processing was used by the former to improve calculation performance, whilst 

sequential processing was used by the latter. Despite the algorithm's ability to cluster data effectively, it is 

hampered by its failure to consider the defined MRF. 

Vadivel and Raghunath [7] developed a hierarchical clustering algorithm based on the MRF to manage 

enormous data. The clustering task used feature selection based on co-occurrence, which was enabled by a 

distributed design that shuffled mapper results according to queues. Even though the approach takes less 

time to compute, the merging stage for hierarchical clustering takes a lengthy time to compute. 

Fries et al. [6] Researchers investigated solutions for large-scale data sets in high-dimensional domains 

using the state-of-the-art projected clustering method P3C. The authors showed that the original design of 

the method was inappropriate for handling large datasets. As a result, they devised the P3C+-MR method, a 

MapReduce-based implementation that incorporates the necessary adjustments to the basic clustering 

concept. The MRF provides improved scalability, however the curse of dimensionality makes the procedure 

difficult. 

Akthar et al. [4] The K-means clustering technique was improved for large data clustering by selecting the 

best centers based on the dimensionality of the data. The method was altered to include the idea of 

choosing the best "K" data points in highly populated areas as the starting points and omitting data points 

outside the selected areas from the final cluster computation. Despite the fact that the algorithm generates 
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better results, it has a few flaws, which include the following: I the algorithm's conclusions are only 

compared to one other algorithm, which is insufficient for effective performance comparison.  

Hosseini & Kiani et al [8] developed an approach for evaluating huge microarray datasets using clustering 

methods. They proposed a Hadoop MapReduce-based Fuzzy Weighted Clustering algorithm (FWCMR). 

Several clustering validity indices were used to test the FWCMR approach's efficiency on numerous large 

microarray datasets maintained across scattered nodes. 

Objectives:  

 To simultaneously plan both Map and Reduce jobs while ensuring timeliness and security. 

 To locate the appropriate resources to run a job on a distributed system in such a way that the total 

execution time, or makespan, is minimized and the work is completed within the security constraints. 

 An optimization approach is proposed for minimizing total task completion time (makespan) and 

improving task execution security. 

MapReduce and Job Profiles Model for Improving Productivity  

A MapReduce job's processing phases are depicted in Figure 1. The WikiTrends application is used in this 

example to examine Wikipedia page traffic records that are gathered (and compressed) every hour. In the 

supplied input dataset, WikiTrends contains 16 map and 16 reduction slots, as shown in Figure 1. As a 

result, there are 5 map waves (which make up the map stage) and 4 decrease waves in the work execution 

(that constitute the reduce stage). A considerable percentage of the map stage may be covered by the first 

shuffle. We seek to reduce stage execution durations by defining task execution time as the sum of 

complementing, nonoverlapping maps [9]. 

Take, for example, job J, which is divided into 𝑁𝑅
𝐽 reduce and 𝑁𝑀

𝐽  map tasks. Let's pretend J is already 

installed in a Hadoop cluster. Let 𝑆𝑅
𝐽 and  𝑆𝑀

𝐽  and denote the number of map and reduce slots set aside for 

job J's future execution. The map stage is made up of a variety of map assignments. When the number of 

tasks exceeds the number of slots, the task assignment is divided into several rounds, which we refer to as 

waves. We calculate the average duration Mavg and the maximum time Mmax based on the distribution of 

map task durations in the previous run. Then, in the future execution with 𝑆𝑀
𝐽

 map slots, the lower and 

upper bounds on the time of the complete map stage (denoted as 𝑇𝑀
𝑙𝑜𝑤 and 𝑇𝑀

𝑢𝑝
  respectively) are 

approximated as follows: 

𝑇𝑀
𝑙𝑜𝑤 = 𝑁𝑀

𝐽  / 𝑆𝑀
𝐽  * Mavg 

𝑇𝑀
𝑢𝑝

 = (𝑁𝑀
𝐽  − 1) / 𝑆𝑀

𝐽  * Mavg + Mmax 

The shuffle and reduce phases make up the reduction stage, and their execution time constraints can be 

calculated identically. 

 

Figure 3. The WikiTrends application was developed on a Hadoop cluster with 16 map and 16 reduce slots. 
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Problem Definition 

Each MapReduce task is assigned a specified number of map and reduce jobs. The quantity of resources 

(reduction and map slots) assigned to the job determines the job execution time and parameters. Figure 3 

depicts the processing of the 71 map and 64 reduce processes in this application using a Hadoop cluster 

with 16 map and 16 reduce slots. Instead of detailed job execution at the task level, we propose a basic 

abstraction in which each MapReduce job Ji is described by the lengths of its map and reduction phases mi 

and ri, i.e., Ji = (mi, ri). The proposed new abstraction is derived using this paradigm Ji = (mi, ri). The methods 

for lowering the total completion time of a batch of MapReduce jobs are explored in this section. The 

inefficiencies of this abstraction are highlighted, as well as a new heuristic for determining the best 

scheduling for a set of MapReduce processes. Consider the two (unrelated) MapReduce processes J1 and J2, 

which are both executing in a Hadoop cluster with a FIFO scheduler. Between these jobs, there are no data 

connections. As a result, once the first job finishes its map stage and begins reduce stage processing, the 

next job can begin running its map stage using the map resources that have been freed, as shown in Figure 

4. The upcoming task's map stage and the previous job's decline stage "overlap." 

 

Figure 4. Execution of two MapReduce tasks, J1 and J2, in a pipeline. 

We make a fascinating remark about how such jobs are completed. Some of the execution orders may 

result in inefficient resource utilization and longer processing times. Consider two separate MapReduce 

tasks that use all of the resources available in a given Hadoop cluster and produce the following reduce and 

map stage durations: J2 = (2s, 20s) and J1 = (20s, 2s). In a Hadoop cluster with a FIFO scheduler, they can be 

processed in one of two ways: 

 

Figure 5. Different job schedules have an impact on overall completion time. 

As indicated in Figure 5 (a), J1 is followed by J2. J1's decrease stage overlaps with J2's map stage, resulting in 

a 2s overlap. As a result, the total processing time for two jobs is 20s + 2s + 20s = 42s and J1 appears after J2 

(as seen in Figure 5(b)). As a result, the total makespan is equal to 2s + 20s + 2s = 24s. Let's have a peek at 

the next issue, J = J1, J2, J3,…. Jn refers to a set of n MapReduce tasks that are data independent. It is need to 

figure out what order (or schedule) jobs Ji ε J should be completed in so that the overall time to complete 

the set is as little as possible [11]. Method 1 demonstrates how Johnson's algorithm can be used to create 

an ideal timetable. The sorting operation dominates the complexity of Johnson's Algorithm, making it O (n 

log n). 
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Table 1. MapReduce jobs considering 5 samples. 

Ji ri Di mi 

J1 5 (4, m) 4 

J2 4 (1, m) 1 

J3 4 (4, r) 30 

J4 30 (6, m) 6 

J5 3 (2, m) 2 

 

Table 2. The ordered list L of five MapReduce jobs. 

Ji ri Di mi 

J2 4 (1, m) 1 

J5 3 (2, m) 2 

J1 5 (4, r) 4 

J3 4 (4, m) 30 

J4 30 (6, m) 6 

Let's utilize Johnson's method to plan a job for the five MapReduce jobs provided in Table 1 as an example. 

The computed attribute Di, which is displayed in the last column, is used to complement these tasks. A 

sorted list of job vacancies may be found in Table 2. For work execution with the lowest total makespan, 

job ordering is equal to Johnson's schedule (J2, J5, J1, J4, J3). In our case, the ideal schedule has a makespan 

of 47 days. 

Security Issues in HDFS 

HDFS, the Hadoop Architecture's foundation layer, contains a large number of data types and is particularly 

vulnerable to security flaws. There is a risk of data access, theft, and unauthorised disclosure when data is 

combined in a single Hadoop system. Additionally, the copied data is unsafe, demanding additional security 

to prevent breaches and vulnerabilities. Most government sectors and companies never employ Hadoop 

Technology to store valuable data because of the absence of security considerations. They offer security 

services such as firewalls and intrusion detection systems outside of the Hadoop ecosystem. Hadoop 
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ecosystem is secured to avoid theft and vulnerabilities by encrypting block levels and individual file systems 

using the Modified Elliptical Curve Cryptography (MECC) encryption method. 

Proposed Methodology 

The original data is first obfuscated and encrypted using the modified ECC (MECC) approach before being 

sent to the cloud. To offer a higher level of data safety, the obfuscated data is then encrypted using the 

Modified ECC algorithm. The ECC algorithm is a form of public-key cryptography implementation 

technology (PKC). This method is based on using a prime number function to construct a curve with certain 

base points. A public key, private key, and a secret key are all created in this proposed system. The secret 

key "ScK" was introduced to the encryption algorithm during encryption, and the encrypted material was 

then uploaded to the cloud. This encrypted material must first be decoded before it can be accessed. The 

MECC algorithm is inverted for data decryption, which means ScK is subtracted from the decryption 

calculation. This suggested effort is depicted in full in Figure 6. 

 

Figure 6. Proposed MECC architecture 

Modified ECC Algorithm 

ECC is utilized for implementing PKC. A prime number function and a curve with defined base points are 

used in this method. In terms of this function, it functions as a maximum limit. The ECC is theoretically 

expressed as, 

 

g2 = x3 + ax + b                     (1) 

The integers are denoted by a & b. The encryption approach's strength is totally dependent on the key 

generation process employed throughout the cryptography procedure. In this suggested task, three keys 

must be constructed. For encrypting the message, the server generates the public key “PbK” the server 

generates the private key "PrK" and the ScK is made up of the PbK, PrK, and point on curve "Hi". During the 

key generation process, both PbK and PrK are created. The data may be encrypted by the sender using the 

recipient's PbK, and the data could be decrypted by the receiver using the PrK [11]. 

Algorithm 2: Modified ECC algorithm 



Nat. Volatiles & Essent. Oils, 2021; 8(5): 3997-4008 

4005 
 

Select a number ‘d’ within the range of ‘n’ 

//Key Generation 

Generate public key using 

PbK = PrK * Hi 

Generate secret key using 

ScK = PbK * PrK * Hi 

//Data Encyption 

Add secret key using 

C1 = (K * Hi) + ScK  

C2 = (M + (K * PbK)) + ScK 

//Data Decryption 

M = (((C2 - PKr ) * C1) - ScK) 

Figure 8. Pseudocode for Modified ECC algorithm 

Where, Message is original (M) and in the range of 1 to n - 1, a random number is generated (K). This 

encrypted data is sent to the user, along with a new source IP address. Pseudocode, which is evinced using 

Algorithm 2, is used to explain the proposed MECC algorithm. The MECC technique is used to obscure and 

encrypt the data sent to the cloud.  

Simulation Results 

The proposed work schedule algorithms and their performance are tested and evaluated using the SimMR 

simulation site. SimMR can play and use performance-based tracking activity data obtained from Hadoop 

collections. Performance simulation performance is attractive because it enables the sensitivity analysis of 

MapReduce wide range of planning policies. The consequences of the fake workload with Unimodal and 

Bimodal distributions are depicted in Figure 7. Five lines are visible in these graphs: The theory makespans 

are given by Johnson’s Min and Max (right) and reschedule Johnson's (very bad) schedules, respectively. To 

put it another way, if MapReduce tasks meet exactly the predictions of a two-phase system, the full 

makespan can be calculated using the abstraction Ji = (mi, ri). The performance benefits that can be 

expected under the best schedule for this quote are represented by the difference between Min and Max. 

With a set of particular functions that download Johnson's schedule and reverse Johnson's programme, 

MinSim and MaxSim simulate SimMR-simulated makespans. Johnson's progression and timeframe 

Johnson's strategy does not guarantee the best and worst times for this task once we have mapped the 

Decrease activities at the work / slots level. Because MinSim's "worst" might be much worse than 

MaxSim's, the gap between MinSim and MaxSim shows the lowest possible development. Finally, the 

duration of the work program created using the new BalancedPools heuristic is simulated (via SimMR) and 

represented in BalancedPools. In the X axis, the size of the Hadoop cluster is represented (without losing 

the standard, by taking 1 map and 1 sliding slot per node). As the size of the collection grows (i.e., as the 

resources available for the collection become more numerous), the performance benefits decrease, as one 

would expect. Reimbursement points, on the other hand, vary depending on the workload. This simulation 

action can be used to determine the set size required to provide a specified (targeted) time for a set of 

tasks. 
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Figure 7(a) illustrates that for the Unimodal scenario, Jonhson's schedule (MinSim) reduces the makespan 

by up to 25% when compared to MaxSim. For bigger cluster sizes, the benefits start to dwindle. The 

bimodal workload, as seen in Figure 7(b), has quite different outcomes. When compared to Johnson's 

timetable, the Balanced Pools heuristic gives up to 38 percent makespan benefits (it is suboptimal for this 

workload). For a variety of cluster sizes, BalancedPools achieves significant extra makespan gains over 

Johnson's technique. Figure 8 shows the results of modelling the Yahoo! M45 workload. There are two 

types of bimodality: unimodal and bimodal. Johnson's schedule, on the other hand, yields poorer returns 

for Yahoo effort!’ in both scenarios. We can only see up to a 12% boost in makespan in most trials. In the 

vast majority of cases, the Balanced Pools heuristic outperforms Johnson's technique by 10% to 30%. The 

proposed system automatically generates the best job schedule and determines its length based on 

available resources. These outcomes are fairly comparable to the simulations. 

 

A) In a simulated cluster, the number of map/reduce slots. 

 

B) In a simulated cluster, the number of map/reduce slots. 

Figure 7. Synthetic workload simulation: (a) Unimodal and (b) Bimodal. 

 

A) In a simulated cluster, the number of map/reduce slots. 
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B) In a simulated cluster, the number of map/reduce slots. 

Figure 8. Simulation the workload of Yahoo!: (a) Unimodal and (b) Bimodal. 

Conclusion 

The authors of this paper are tasked with devising a plan that reduces the time required to finish a 

collection of MapReduce activities. BalancedPools is a new and heuristic framework that effectively utilizes 

the structures and behaviors of MapReduce processes to a specific taskload in order to provide the best 

possible work plan. Heuristic testing is done on the MapReduce list to test what kind of performance 

improvement we can get. Data analysis functions are usually defined using high-quality SQL abbreviations, 

which may result in dependable Map Reduction processes. The next step is to tackle the broader issue of 

reducing the time frame for project completion, which includes MapReduce processes. The MECC method 

is used to encrypt and encrypt data sent to the cloud. 
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