

Cloud Point Extraction with Liquid Ion Exchange For Separation And Determination Of Zinc (Ii)

Jihan R. Moslim, Safa M. Hameedand Shawket K. Jawad

Chemistry department - College of education for girls Kufa University - Al-Najaf – Iraq Email: jihanr.allihaby@uokufa.edu.iq , Safaa.alhassani@uokufa.edu.iq

Abstract

For extraction Zinc (II) as ion pair association complex,used Cinchonine as organic reagent to performed this extraction method, spectrophotometric studies for ion pair association complex for Cinchonine and Zn^{2+} in acidic HCl medium, shows the wave length of maximum absorbance was λ_{max} =290nm,as well as optimum conditions for higher extraction efficiency according to liquid ion exchange coupled with cloud point extraction method where,0.3MHCl ,in presence 50 µg Zn²⁺ in 10 mL aqueoussolution,0.5 mLsurfactant Triton X- 100 , with heating at 85°C for 15 min. The stoichiometry shows up the composition of ion pair association compiles extracted was H Cinchonine⁺; HZnCl₂⁻, in addition to other studies such as effect ofelectrolyte, interferences, and else.

Keyword: Zinc (II), Cloud, point extraction method, liquid ion exchange, Cinchonine

Introduction

Cloud point Extraction method is applied for extract of Zn(II)as chloro anion complex from HCl media by using 3-[(pyridylazo)]-1-nitroso-2-naphthol (PANN) in presence 1% Triton X- 100 after spectrophotometricstudies for PANN and Zn (II) complex and this method is for separation and determination of Zn(II) in different sample^[1].Zinc was separated from SCN⁻ by N-N- hexylaniline dissolved in xylene and H₂SO₄ media, studying several variables effecting on separation method as solvent, extractant, acid concentration and other studies^[2].Cloud point extraction method used for determination of Cadmium , Copper , Lead and Zinc in water samples coupled with FAAS and formed complex with 1-(2- thiazolyazo)-2- naphthol and triton X-114 , LOD =(0.095, 1.1 , 0.270 , 0.009)µg mL⁻¹for (Cd , Cu, Pb, Zn)^[3].Application of CPE technology to extract Cobalt ,Nickel, and Copper ions from water , urine and blood samples by farming complexes with (DHBPHC) and using an effective surface Triton X-100^[4].Spectrophotometric study of Zn (II) and Co(II) extracted according to onium systems from acidic HCl Solution by (2,4-dimethyl pentan-3-one) as onium complex^[5].The liquidion Exchange application for micro amount separation and determination for elements^[6,7].Cloud pointextraction joined with liquid ion exchange to separate and extraction some ions from acidic HCl media as ions pair association complexes^[8]. Several studies have applied the cloud point extraction (CPE) technique in combination with the spectroscopic method, to separate and determination a number of elements is different environmental models, and results were characterized by accuracy and high sensitivity^[9-17].Using a sensitive technique for the determination of Copper, Iron ,Nickel , and Zinc ions to form chelated complexes with (((3-indolin-3yl)(phenyl)methyl))indoline using Triton X-114in different samples ^[18].Application of liquid ion exchange technology with cloud point extraction technology to extract and determination the ions of Pt(II) and Mo (VI) by using Triton X-100 and study the factors affecting the acidic medium ofHCl and determination the ions inform ofPtCl₃⁻, MoO₄^{=[19,20]}.

Experimental

A. Reagents

Distilled water was used in all experiments of this study in order to prepared solutions, all chemicals are obtained from certified companies, stock solution of Zn (II) in concentration 1mg/mL was proposed by dissolved 0.1g of Zn metal in 25 mL of dilute hydrochloric acid, and after complete the solubility complete the solution to 100mL with distilled water in volumetric flask, other solution of Zinc (II) prepared by dilution with distilled water in suitable volumetric flasks, as well as prepared Cinchonas solation in 1x10⁻³M by dissolved 0.0294 g of Cinchonine in 100 mL distilled water, and other solutions proposed by dilutionwith distilled water.

B. Instrumentation

All spectrophotometric studies performed by a Biochrom type (80-700-11- Libra s60) spectrophotometer from Japan was used, for heating the solutions used Water Bath, (Hamburg - 90), England with regular temperature, balance A&D (DOOI,CE, HR 200) japan.

General Method

Preparing 10 mL aqueous solution contain 50µg Zn²⁺ion, 0.3 M hydrochloric and HCl, 1x10⁻⁴Cinchonine, and 0.5 mL of surfactant Triton X-100, heat the solution in electrostatic water bath at 85°C for 15 minutes, until formation cloud points layer (CPL),then we are separate cloud point layer CPL from aqueous solution,and dissolved CPL in 5 mL ethanol, afterward measure the absorbance of alcoholic solution at λ_{max} = 290 nm vis blank prepared at the same manner without Zn²⁺ ion, but the aqueous solution treated with dithizone spectrophotometric method ^[21],then return to calibration curve in Fig (2), in order to determine remain quantity of Zn²⁺ ion in aqueous solution after

extraction, afterward we subtract this remain quantity of Zn²⁺ ion from the original value, in order to determine, the quantity transferred to cloud point layer an ion pair association complex, at latter calculate Distribution ratio D from this quantities as in relation below

$$D = \frac{[Zn^{2+}]_{cpl}}{[Zn^{2+}]_{aq}}$$

Results and Discussion

Spectrophotometric study

Prepared 10 mL aqueous solution contain 50 μ g Zn²⁺ ion, 0.5 M hydrochloric acid HCl, 1x10⁻⁴M Cinchonine, and 0.5 mL surfactant Triton X-I00, heat this solution in electrostatic water bath at 85C^o for 15 minutes, until formation Cloud point layer CPL, then separation CPL from aqueous solution, and dissolved in 5 mL ethanol, afterward we took UV-Vis spectrum for alcoholic solution against blank prepared at the same manner without Zn²⁺ ion, the result demonstrate is Fig (1)

The spectrum show up the wavelength for maximum absorbance was λ_{max} = 290 nm , used this wave length to measure the absorbance of alcoholic solutions in subsequent experiments.

Effect of HCI Concentration

Prepared 10 mL aqueous solution contain 50 µg Zn²⁺ion,1x10⁻⁴M Cinchonine, 0.5 mL surfactant Tritonx-I00, with exists different concentration of hydrochloric and HCl, heat these solutions in electric water bath at 85°C for 15 min., until formation Cloud point layer CPL, then separation CPL from aqueous solution and dissolved in 5 mL ethanol, and complete the work as in general method, the results were as in Figs 3, 4.

Fig (2): Calibration curve for determination Zn^{2+} ion in aqueous solution by dithizonespectrophotometric method

Fig (3). Effect of HCl concentration on formation Fig (4): Effect of HClconcentration on and stability of ion pair association complex extraction efficiency and D-values

The results appear 0.3M HCl was the optimum concentration, give higher extraction efficiency and D-value, become this concentration give best equilibrium to formation ion association complex and distribution to cloud point layer.

Effect of Zn⁺² Concentration

A number of 10 mL aqueous solutions prepared, contain increased amount d Zn²⁺ion, 0.3MHCl, 1x10⁻ ⁴ M Cinchonine, 0.5 mL non-ionic surfactant Triton X-100, heat the solutions in electrical water bath at 85°C for 15 min, to formationcloud point layer CPL, we separated CPL from aqueous solutions and complete the experiment as in general method, the results were as in Fig 5, 6.

Fig (5): Effect of Zn^{2+} ion conc. on formationFig (6): Effect of Z^{2+} ion conc.

and stability of ion pairs association complex on extraction efficiency and D-Value

The results appear maximum extraction efficiency and D-value obtained in exists 50 μ g Zn²⁺ /10mL aqueous solution because metal is considering as thermodynamic value, effect on the thermodynamic equilibrium to formation ion pair association complex, whereas 50 μ g Zn²⁺ion give best equilibrium state to formation in pair associationcomplex with higher stability.

Effect of Surfactant Volume

A series of 10mL aqueous solutions was prepares each one contain 50 μ g Zn²⁺, 0.3MHCl, 1x10⁻⁴ M in Cinchonine and different volume of surfactant Triton X-100, then heat all these solutions in electrostatic water bath at 85°C for 15 min to formation cloud point layer CPL, and complete the work as in general method the results were as in Fig 7,8

Fig (7) Effect of surfactant volume on Fig (8) Effect of surfactant volume on Cloud point layer formationextraction efficiency and D-value

The results show up 0.5 mL of surfactant was the optimum volume gave higher extraction efficiency because this volume give best thermodynamic and kinetic equilibrium for aggregation micelles to

formation good Cloud point layer, with smaller volume and higher density, which is have large surface area to accommodating large amount ofion association complex extracted.

Temperature Effect

Many 10 mL aqueous solutions were prepared, contain 50 μ g Zn²⁺ ion, 0.3 MHCl, 1x10⁻⁴ M Cinchonine, and 0.5 mL Triton X-100, then heat these solutions in electrostatic water bath at 85°C for 15min, until formation cloud point layer CPL, and complete the work as in general method, the results were as in Fig 9,3

The results appear 85°C was the optimum temperature gave higher extraction efficiency. After calculated extraction constant K_{ex} from D-values by thermodynamic relation below the results clear in Fig (11).

Fig (11): Effect of Temperature on extraction constant

From the slope of the straight line in Fig (11) the thermodynamic were calculated data

ΔH_{ex} = 32.763 k J mol⁻¹

ΔG_{ex}= - 65.77k J mol⁻¹

 $\Delta S_{ex} = +275.23 \text{ J mol}^{-1}\text{k}^{-1}$

Effect of heating time

Prepared many 10 mL aqueous solution contains 50 μ g Zn²⁺ion, 0.3 MHCl, 1x10⁻⁴ M Cinchonine, and 0.5mL Triton X-100, heat these solutions in electrostatic water but at 85°C for different time, and complete as in general method, the results were as in Fig 12,13

Fig (13): Effect of heating line on extraction efficiency and D-value

The results show up 15 min was the optimum timeof heating to give higher extraction efficiency. Because heating time represent the kinetic side of extraction method help to good aggregation micelles with complete dehydration to formation Cloud point layer with larger surface area to accommodating large amount of ion pair association complex extracted.

Stoichiometry

In order to determine the more probable structure of ion pair association complex extracted for Zn²⁺ ion with Cinchonine, used two spectrophotometric methods:Slope analysis metal and Slope ratio method the solutions treated according to general method, the results as in Figs 14,15,16.

Fig (14) Effect of Cinchonas concentration of extraction efficiency and D-values

Fig (16): Effect of Zn²⁺concentrations on formation and stability of ion pair association complete slope ratio $=\frac{166.4}{186.64} = 0.892$

The slope and slope ratio values lead to the structure of ion pair association complete extracted was 1:1 H- Cinchonine⁺; HZnCl₄⁻

Electrolyte Effect

According to general method and at optimum conditions extracted Zn²⁺ from 10mL aqueous solution in exists different electrolyte at different concentrations, the results were as in Figs 17,18

Fig (17): Effect of different conc. for different electrolytes on formations and stability of ion pair association complete extracted

Fig (18): Effect or different conc. of different electrolytes on extracted efficiency and D-value

The results appear existence electrolyte in aqueous solution with Zn²⁺ ion effected to increase extraction efficiency and D-values, that is mean electrolyte increase chances of formation ion pair association complete, so that distribution it to CPL.

Effect of Interferences

By existence 0.01M of foreign ions in aqueous solution with Zn^{2+} ion, extracted the ion pair association complex formed for Zn^{2+} ion according to general method, the results were as in Table (1).

foreign ion	Absorbance at λ_{max} =290nm	D
Cd ²⁺	0.348	20.56
Ag⁺	0.386	25.43

 Table (1). Effect of interference on extraction efficiency0.01M

Hg ²⁺	0.331	16.67
Pb ²⁺	0.225	11.83
Ni ²⁺	0.285	14.51

The results show exists foreignion in aqueoussolution with Zn²⁺ ion effect to decrease extraction efficiency and D-values, so that this decreasing differs with different foreign ion.

Variations Surfactant Kind

According to the used extraction method and at optimum conditions by use 1×10⁻⁴M Cinchonine with Different surfactant, extracted Zn²⁺ ion as ion pair association complex and results were as in Table 2.

Surfactant	CPL	D
	Abs.λ _{max} =290nm	
Tween20	0.095	6.58
Tween40	0.221	10.63
Tween80	0.323	15.70

Table (2): Effect of surfactant kind on extraction efficiency of Zn⁺² ion

The results showed a decrease in the extraction efficiency of the Zn^{2+} ion as ion pair association complex whenusing Tweens as surfactants. These results indicate the Tweens are not suitablesurfactants on extraction of Zn^{2+} ion.

Variations of organic Reagent

By the general method, different organic reagents were used with a concentration $(1 \times 10^{-4} M)$ to extract the Zn²⁺ ion at optimum conditions. The results are as in Table 3.

Table (3): Effect of organic reagent on extraction efficiency of Zn²⁺ ion

Organic reagent	λ_{max}	CPL. Abs	D
Ascorbic acid	292	0.372	36.04
Acetophenone	293	0.928	65.70
Salicylic acid	291	0.298	20.70

The results showed difference in the extraction efficiency of the Zn²⁺ ion by using different organic reagents, this differencebecause of the difference in behavior and structure, give variation in the sensitivity and extraction efficiency.

Spectrophotometric Determination Zinc(II)

Zinc(II) was determined spectrophotometrically in different environmental samples and using an appropriate masking agent , Calibration curve after setting the absorbance versus ppm for the zinc ion as in Fig. 19.

Analytical parameters for the calibration curve of the Zn(II) for the applied method are given in Table 4.

Table 4 : Analytical parameters of applied CPE with liquid ion exchange

λ_{max} (nm)	290	
Parameter linearity (ppm)	0.5-5	
Molar absorptivity(L.mol ⁻¹ .cm ⁻¹)	5.165×10 ³	
LOD(ppm)	0.3428	
LOQ(ppm)	0.3673	
Sandell's sensitivity (µg/cm ²)	1.27×10 ⁻²	

The samples were prepared according wet digestion method ^[22]and processed by the applied analytical method and at optimum conditions, then the absorption was measured, through the calibration curve, the zinc ion was determined in those samples. The results compared with FAAS, as standard method, and the results were shown in Table 5.

Table5: Zinc content (ppm) in different samples

No.	Sample	Applied method (ppm)	FAAS Method(ppm)
1	Agriculture Soil	2.84	2.81
2	Non-agriculture Soil	8.31	8.51
3	Soil from local market	2.64	2.91
4	Quince	1.16	1.20
5	Stump	1.88	2.00

6	Apples	0.61	0.59
7	Celery	2.36	2.27
8	Cress	2.48	2.35
9	Radish	0.55	0.58
10	Fish	2.96	3.21
11	Meat	9.11	9.02
12	Drinking water (Al-Ataba)	1.12	1.12
13	Drainage water	1.02	0.86
14	Water of Euphrates river	0.80	0.77
15	Human hair	2.30	2.28

Conclusion

1. Extraction efficiency according to ability of organic reagent to formation liquid on exchanger.

2. Extraction efficiency differ according the ability of metal cation to formation anion complex.

3. Acid concentration in aqueoussolution lead to different velocity for thermodynamic equilibrium to formation ion pairassociation complex.

4. when we are application this method to extraction and determination Zn^{2+} ion in different samples mint to med masking agent for the metal ions.

5. Heating time represented the kinetic side of extraction method lead to the quantity of heating in the solution to decide the velocity of micelles to aggregation.

References

- 1. Jawad, S.k., and Azooz, E.A. J, fire science and Technology, 3, pp: 261-273, (2015).
- Sharaf, H. K., Salman, S., Abdulateef, M. H., Magizov, R. R., Troitskii, V. I., Mahmoud, Z. H., ... &Mohanty, H. (2021). Role of initial stored energy on hydrogen microalloying of ZrCoAl (Nb) bulk metallic glasses. Applied Physics A, 127(1), 1-7.
- JianrongC. and khayC.T,"'Determination of cadmium Copper, lead, and Zinc in water samples by flame Atomic Absorption spectrometry after Cloud Point Extractions, J. of Analytical Chemical acta, 450(1-2), Pp :215-222 (2001).
- Eman. A. Erfan, Wael I. Mortada, Hala A. El- Asmy and Mohamed M. El-Defrawy," Cloud point Extraction procedure for preconcentration of Co²⁺, Ni²⁺ and Cu²⁺ from water and Biological samples vising a thiosemicarbazon Derivative as a complexing Agent", Egypt. chem, 64(7), pp: 3431-3437, (2021).

- Jihan. R. M, Shawket, K.J. (ONIUM METHOD FOR EXTRACTION AND SPECTROPHOTO METERIC DETERMINATION OF ZN(TI) AND CO (I)", Journal of Research in Applied, 1(2), pp:97-110,(2015).
- Shawket. k. J, Maha. A.H, "Extraction and Determination of Ni(II) using cryptand C222 and 8-HydroxyQuinoline from Basic Solutions via The liquid Ion Exchange Method", Journalof Engineering and Applied Sciences, 13(17), pp:7215 - 7222; (2018).
- 7. Shawket, K J, Safa. M.H, Sahar. A.H, "liquid Ion Exchange Application for Micro Amount separation and Determination of Ca (II) and Mg (II) as Anions species with EDTA" Oriental Journal of chemistry; 33(5), (2017).
- Shawket, K. J,Musa.U. kand Ebaa A. A," Application cloud point Extraction Method Joined with liquid Ion Exchange for selective Determination of Fe³⁺ and Hg²⁺ in Real samples" Journal of Engineering and Applied Sciences, 14(II), pp:3514-3521,(2019).
- R.M. Jihan"cloud point Extraction Method for Separation, Extraction and spectrophotometric Determination I of Zn(II) and Ni(II) as chloro Anion complex byuse of Crustal violet" Journal of Kufa for Chemical science, 1(10): 86-103, (2015).
- M Kavitha, Z. H. Mahmoud, KakarlaHari Kishore, AM Petrov, AleksandrLekomtsev, Pavellliushin, Angelina OlegovnaZekiy, Mohammad Salmani. application of Steinberg Model for Vibration Lifetime Evaluation of Sn-Ag-Cu-Based Solder Joints in Power Semiconductors. IEEE Transactions on Components, Packaging and Manufacturing Technology. 2021; 11(3):444-450.
- 11. S.K. Jawad and J. R. Muslim, "Cloud point extraction methodology for separation and microamounts determination of lead (II) and cadmium (II) ions", Iraqi National Journal of Chemistry, 47, pp. 401- 412, (2012).
- S. KJawad, F. A. Wannas, J.R. Moslim and I. R. Ali, "organic solvent effect, thermodynamic study and Synergism behavior for efficiency of Cobalt (II) Complex with 1-[2-pyridyl azo]-2naphthol", Global Journal of Science Frontier Research, 16, pp:25-31, (2016).
- 13. S.K. Jawad and A.S. Abed, "Determination of Nickel (II) by using anew synthesized ligand via cloud point extraction methodology", Journal of Research in Applied, 1, pp:1-14,(2015).
- S.K. J. & S. M. Hameed, " separation and Extraction Micro Amount of cadmium (II) and Mercury (II) with Liquid Anion Exchange Method", Ibn AL-Haitham J. for pure of appl. SCI, 24 (2):152-161. (2011).
- S.k. Jawad, Y. W. Fawzi and F. H. Ghosoon, "Complexation and Extraction studies of 2-[(Benzothiazolyl) azo] -4 benzylphenol with Cd⁺² Ion", Journal of Kufa for chemical science, 1; 16-22, (2010).

- 16. S.k. Jawad and M. Nadia" Liquid Ion extraction and spectrophotometric Determination of Tungestate WO₄ by AZO- derivative", Journal of Kufa for chemical Science, 1(10):7-20 (2015).
- 17. S.k. Jawad, Y. R. Jabir and E. Yousif, "Liquid Ion Exchange Method for Separation and Extraction of Molybdate by Vse of Brilliant Green with Spectrophotometer Method of Determination", Journal of Advanced Chemical Sciences, 1 (4): 128-132; (2015).
- 18. M. Ghaedi, A.S hokrollahi, Kh. Niknam, E. Niknam and M.Soylak (Development of Efficient Method for Preconcentration and Determination of Copper, Nickel, Zinc and Iron Ions in Environmental Samples by Combination of Cloud Point Extraction and Flame Atomic Absorption Spectrometry), Central European chem.,7,1,148-154, (2009).
- S.k. Jawad, M.N. Salih, "Cloud Point Extraction Methodology for separation and Extraction platinum (II) as chloro complex anion coupled with Spectrophotometric method for Determination in Different samples", Natural Sciences Research, 5, 3, 195-201, (2015).
- 20. S.K. Jawad, M.N.salih, "sensitive separations Preconcentration molybdenum (II) via cloud point extraction Methodology", plastic and polymer, Technology ,1,1, 37-48, (2015).
- 21. Marezenko.Z and Balcerzak.M,"Separation Preconcentration and Spectrophotometric in Inorganic Analysis" ,1sted, Elsevier Science B.V.(2000).
- Mester,Z., Sturgeon, R.E. "Sample preparation for trace element analysis, Vol. 41 (Comprehensive analytical chemistry)". 1st ed., Elsevier Science, (2003).