

'The Gc Ms Analysis Of Ethyl Acetate Extract Of One Herbal Plant, 'Aristolochia Bracteolata'

Hassan Mohammad M¹, Sharmila D², Nandini M S³, Prabhu K⁴, Rao M R K^{5*}, Kalaivannan J ⁶, Janaki CS ⁷

¹Lecturer, Department of Anatomy, Faculty of Medicine, Northern Borders University, Arar, Saudi Arabia.

²Sharmila D, Assist. Professor, Dept. Of Industrial Biotechnology, Bharath Institute of Higher Education and Research, Chennai, India

³Assistant Professor, Department of Microbiology, SreeBalaji Medical College and Hospital, Chennai, Tamil Nadu, India

⁴Associate Professor, Department of Anatomy, SreeBalaji Medical College and Hospital, Chennai, Tamil Nadu, India

⁵ Consultant Scientist, M/s. Noahs Laboratories, No, 8/1, Old Mahabalipuram Road, Thiruporur, Tamil Nadu 603110, India.

⁶Associate Professor, Department Of Anatomy, Vinayaka Mission's Medical College And Hospital, Karikal, Vinayaka Mission's Research Foundation, Salem, Tamil Nadu, India.

⁷Associate Professor, Department of Anatomy, Bhaarath Medical College, Chennai, Tamil Nadu, India

ABSTRACT

The present study deals with the GC MS analysis of one medicinal plant, 'Aristolochiabracteata. Ethno-pharmacologically this plant has medicinal roles such as stimulant, tonic, purgative and emmenagouge. This plant was collected from nearby fields of Chengalpattu, Tamilnadu. The ethyl acetate extract of the aerial parts of the plant was subjected to GC MS study following standard protocols. It was observed that some very important molecules such as 1,2,4-Cyclopentanetrione, 3-methyl-, 4(1H)-Pyridone, trans-3-Methyl-2-n-propylthiophane, 3-Hydroxydecanoic acid, Acetic acid, trifluoro-, anhydride, Lactose, 2-(N-Morpholinyl)ethylphosphine, Benzaldehyde, 2-hydroxy-6-methyl-, Trifluoromethyl t-butyl disulphide, .beta.-D-Glucopyranose, 1,6-anhydro-, 9-Decenoic acid, 1,6-Anhydro-.beta.-D-glucofuranose, Myo-Inositol, 4-C-methyl-, alpha.-D-Xylofuranoside, methyl 3-O-methyl-, n-Hexadecanoic acid etc. were found in the GC MS profile of this plant which have far reaching medicinal roles, thereby supporting the medicinal value of this plant.

Keywords GC MS, Aristolochiabracteolata, 1, 2, 4-Cyclopentanetrione, 3-methyl-, 4(1H)-Pyridone, trans-3-Methyl-2-n-propylthiophane, 3-Hydroxydecanoic acid

INTRODUCTION

A small plant belonging to Arisolochiaceae family, Aristolochiabracteolataor Aristolochiabracteata,

has many ethnopharmacological uses. Almost all parts of the plant are used as medicine. It is used to treat insect and spider bites, worm infestations and eczema. It has medicinal roles such as stimulant, tonic, purgative and emmenagouge. Some reports on pharmacological roles of this plant are available. Kavitha and Nirmaladevi, 2009, have reported the assessment of bio-therapeutic potential of Aristolochia bracteolate. Mohamed et al, 2014 have reported the antimicrobial activities of this plant. Abdelgadiret al, 2011 have isolated and characterized the Aristolochic acid of this plant. Krishnappa and Elumalai, 2012, have studied the toxicityof methanolic leaf extract on mosquitoes. Thirumalai, 2012 has overviewed on the pharmacognostical, phytochemical and pharmacological properties of this plant. Kanakavlliet al, 2015, have reported the antimicrobial activity of Aristolochiabracteolata. Mutteviet al, 2020 have reported the GC MS patterns of a related species, Aristolochiaindica. The present works deals with the GC MS analysis of the ethyl acetate extract of

the aerial parts of Aristolochia bracteolate. This work is in continuation of our work to establish the efficacy of the herbal plants, Ayurvedic and Sidhha medicines. (Priyadarshiniet al, 2017; Jayakumariet al, 2017; Raoet al, 2018; Vijayalakshmi and Rao, 2019; Yuvarajet al, 2019; Mutteviet al, 2019, Raoet al, 2019; Mutteviet al, 2020; Vijayalakshmi and Rao, 2020; Janakiet al, 2021, Perumalet al, 2021).

MATERIALS AND METHODS

The plant Aristolochiabracteolatawas collected from the nearby fields at Chengalpattu, Tamil Nadu. The plant was identified by a qualified botanist at Chennai. The ethyl acetate extract of the shade dried leaves were collected after 48 h of soaking. The extract was evaporated and the dried powder was used for GC-MS analysis by standard procedures.

GC-MS Procedure

Instrument: GC (Agilent: GC: (G3440A) 7890A. MS/MS: 7000 Triple Quad GCMS) was equipped with MS detector.

Sample Preparation

About 100 ml sample was dissolved in 1 ml of suitable solvents. The solution was stirred vigorously using vortex stirrer for 10 s. The clear extract was determined using GC for analysis.

GC-MS Protocol

Column DB5 MS (30 mm × 0.25 mm ID ×0.25 μ m, composed of 5% phenyl 95% methylpolysiloxane), electron impact mode at 70 eV; helium (99.999%) was used as carrier gas at a constant flow of 1 ml/min injector temperature 280°C; auxilary temperature: 290°C ion-source temperature 280°C.

The oven temperature was programmed from 50°C (isothermal for 1.0 min), with an increase of 40°C/min, to 170°C C (isothermal for 4.0 min), then 10°C/min to 310°C (isothermal for 10 min) fragments from 45 to 450 Da. Total GC running time is 32.02 min. The compounds are identified by GC-MS Library (NIST and WILEY).

RESULTS AND DISCUSSION

The results of the GC-MS analysis of the whole plant ethyl acetate extract, along with the possible

medicinal role of each molecule of Aristolochiabracteolataextract are tabulated in Table 1. Figure 1

represents the GC-MS profile of ethyl acetate extract of the whole plant of Aristolochiabracteolata. The identification of metabolites as accomplished by comparison of retention time and fragmentation pattern with mass spectra in the NIST spectral library stored in the computer software (version 1.10 beta, Shimadzu) of the GC-MS along with the possible pharmaceutical roles of each bio molecule as per Dr. Duke's Phytochemical and ethnobotanical data base (National Agriculture Library, USA) and others as shown in Table 1. From the results it was observed that this plant contained some very important biomolecules such as1,2,4-Cyclopentanetrione, 3-methyl-, 4(1H)-Pyridone, trans-3-Methyl-2-n-propylthiophane, 3-Hydroxydecanoic acid, Acetic acid, trifluoro-, Lactose, 2-(N-Morpholinyl)ethylphosphine, Benzaldehyde, 2-hydroxy-6-methyl-, anhydride, Trifluoromethyl t-butyl disulphide, .beta.-D-Glucopyranose, 1,6-anhydro-, 9-Decenoic acid, 1,6-Anhydro-.beta.-D-glucofuranose, Myo-Inositol, 4-C-methyl-, alpha.-D-Xylofuranoside, methyl 3-Omethyl-, n-Hexadecanoic acid etc. were found in the GC MS profile of this plant which have far reaching medicinal roles, thereby supporting the medicinal value of Aristolochia bracteolate.

CONCLUSION

Thus it can be concluded that due to the presence of these molecules, Aristolochia bracteolatehas the medicinal roles for which it is used. Further work to isolate and understand the molecular mechanism is warranted.

ACKNOWLEDGMENT

The authors report their sincere thanks to all who have helped in this project.

REFERENCES

1. Kavitha, D., Nirmaladevi, R. (2009) Assessment of Aristolochiabracteolata leaf extracts for its biotherapeutic potential. African Journal of Biotechnology, 8(17), 4242-4244

Mohamed, M. S., Idriss, M. T., Khedr, A. I. M., AlGadir, H. A., Takeshita, S., Shah, M. M., Ichinose,
Y., Maki, T. (2014)Activity of Aristolochiabracteolate against Moraxella catarrhalis. Int J Bacteriol.
2014: 481686.

3. Abdelgadir, A. A., Ahmed, E. M., Eltohami, M. H. (2011)Isolation, Characterization and Quantity Determination of Aristolochic Acids, Toxic Compounds in Aristolochiabracteolata L. First Published February 27, 2011.https://doi.org/10.4137/EHI.S6292

4. Krishnappa, K., Elumalai, K. (2012) Toxicity of Aristolochiabracteata methanol leaf extract against selected medicallyimportant vector mosquitoes (Diptera: Culicidae). Asian Pacjific J of Trop Dis, 2(2), 5553-5557.

5.Thirumal, M. (2012) Aristolochiabraceolata: An Overview on Pharmacognostical, Phytochemical and Pharmacological Properties, Critical Review. Pharmaceutical Sciences, 1 (1), 70-85

6. Kanakavalli., Kaniyan., Mohanapriya., Hemalatha., Parthiban., Samraj., Thillaivanan. (2015) A review on anti-microbial herbs in siddha medicine. IJPPR, 7(1), 72-75

7. MutteviHyagreva Kumar, Prabhu, K, Mudiganti Ram Krishna Rao, Lakshmisundram, R., Sampad,Shil, Sathish Kumar, M., Vijayalakshmi, N.(2020)The GC MS study of one medicinal plant, Aristolochiaindica .DIT, 12(12), 2919-2923.

8. GomathiPriyadarshini, Arul Amutha Elizabeth, Jacintha Anthony, Mudiganti Ram Krishna Rao, Prabhu. K., Aiswarya Ramesh, Vani Krishna. (2017) The GC MS analysis of one medicinal plant, Premnatomentosa. Journal of Pharmaceutical Sciences and Research, 9(9), 1595-1597

9. Jayakumari, S., Prabhu, K., Mudiganti Ram Krishna Rao, Bhupesh, G., Kumaran, D., Aishwariya Ramesh. (2017) The GC MS Analysis of a Rare Medicinal Plant Aloe barbadensis. J. Pharm. Sci. & Res.9(7), 1035-1037

10. Rao, M. R. K., Vijayalakshmi, N. (2018) Preliminary phytochemical and GC MS analysis of different extracts of Sphaeranthusindicus leaves. Indo American J of Pharmaceuical Sciences, 5(3), 1511-1520

6775

11. Vijayalakshmi, N., Mudiganti Ram Krishna Rao. (2019) The antioxidant studies of two medicinal plants, Sphaeranthusindicusand Psophocarpustetragonolobus. Asian J of pharmaceutical and Clinical Res, 12(1), 321-327.

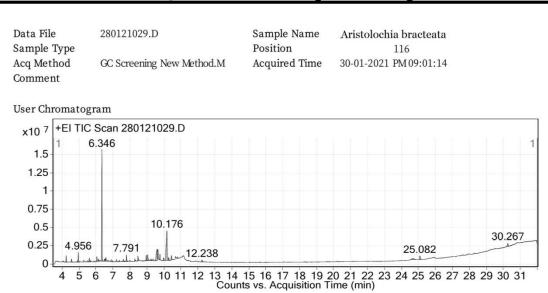
12. Yuvaraj, R., Mudiganti Ram Krishna Rao, Prabhu, K., Lakshmisundram, R., SampadShil, Sathish Kumar, M., Vijayalakshmi, N. (2019)The GC MS study of one medicinal plant, Stachyterphetaindica.Drug Invention Today, 12(9), 1665-1669

13. MutteviHyagreva Kumar, Prabhu, K., Mudiganti Ram Krishna Rao, Lakshmisundram, R., SampadShil, Sathish Kumar, M., Vijayalakshmi, N. (2019)The GC MS study of one medicinal plant, Dodoneaangutifolia. Drug Invention Today, 12(9), 1661-1664

14. Mudiganti Ram Krishna Rao, Vijayalakshmi, N., Prabhu, K., Sathish Kumar, M. (2019)The gas chromatography–mass spectrometry study of Moringaoleiferaseeds. DIT, 12(10), 2172-2175

15. MutteviHyagreva Kumar, Prabhu, K., Mudiganti Ram Krishna Rao, Lakshmisundram, R., SampadShil, Sathish Kumar, M., Vijayalakshmi, N.(2020)The GC MS study of one medicinal plant, Aristolochialndica .DIT, 12(12), 2919-2923.

16. Vijayalakshmi, N., Mudiganti Ram Krishna Rao. (2020) 'Preliminary phytochemical and antioxidant studies of leaf extracts of one medicinal plant, Vitexnegundo".RJPT, 13(5), 2167-2173


17. Janaki C. S., Prabhu K., Mudiganti Ram Krishna Rao, Venkat Ramaiah, Shruti Dinkar, Vijayalakshmi, N., Kalaivannan. J. (2021) The GC MS analysis of Ethyl acetate extract of Merremiaemerginata'. Ind J of Natural Sciences, 12(67), 33638-33646

18. Perumal, G. M., Prabhu, K., Rao, M. R. K., Janaki, C. S., Kalaivannan, J., Kavimani, M. (2021) The GC MS analysis of Ethyl acetate extract of 'Flueggealeucopyrus. Nat. Volatiles & Essential Oils, 8(5), 4035-4040

 Dr.Duke's Phytochemcial and Ehnobotanical Databases.U.S. Department of Agriculture, Agricultural Research Service.1992-2016. Dr. Duke's Phytochemical and Ethnobotanical Databases. Home Page, http://phytochem.nal.usda.gov/ http://dx.doi.org/10.15482/USDA.ADC/1239279

6776

Figure 1. Shows the GC MS profile graph of ethyl acetate extract of Aristolochia bracteolate.

Qualitative Compound Report

Table1. Indicates the retention time, types of possible compound, molecular formula, molecular mass, percentage peak area and the possible medicinal roles of each compound as shown in the GC MS profile of Aristolochiabracteolata

Ret.	Molecule	Mol.	Mol.	% Peak	Possible medicinal role
Time		Formula	mas	area	
			S		
4.24	1,2,4-Cyclopentanetrione,	C6H6O3	126	2.06	Catechol-O-Methyl-Transfearse
	3-methyl-				inhibitor, Methyl donar
4.55	4(1H)-Pyridone	C5H5NO	95	1.09	11Beta HSD inhibitor, 17-beta-
					hydroxysteroid dehydrogenase
					inhibitor, 5 HETE inhibitor, 5 HT
					inhibitor, 8 HETE inhibitor, Anti 5-
					HT, Anti HIV integrase, Aryl
					hydrocarbon hydroxylase inhibitor,
					HDL genic, Hematopoietic
4.92	2,5-Furandicarboxaldehyde	C6H4O3	124	0.82	Not known
4.96	trans-3-Methyl-2-n-	C8H16S	144.1	2.96	Catechol-O-Methyl-Transfearse

	propylthiophane				inhibitor, Increases Glutathione-s-
	r - r , r				Transferase Activity, Decrease
					Glutamate Oxaloacetate
					transaminase activity, Decreases
					Glutamate pyruvate transaminase,
					Glycosyltransferase inhibitor,
					Glutathione-S-Transfearse
					inhibitor, Increases glyoxalate
					transamination, Reverse
					transcriptase inhibitor,
					Anaphylactic, Arylamine N
					acetyltransferase inhibitor,
					decreases norepinephrine
					production, Down regulates
					nuclear and cytosol androgen
					reuptake, GABA-nergic, Increase
					NK cell activity, inhibits production
					of tumor necrosis factor, Myo-
					neuro-stimulator
5.60	Benzofuran, 2,3-dihydro-	C8H8O	120.1	1.70	Not known
6.04	3-Hydroxydecanoic acid	C10H20	188.1	2.50	Acidifier, Arachidonic acid Inhibitor,
		03			Increases Aromatic Amino acid
					decarboxylase activity, Inhibits
					production of uric acid, Urine
					acidifier
6.15	3,4-	C8H13N	155.1	0.87	Not known
	Methylpropylsuccinimide	02			
6.35	Acetic acid, trifluoro-,	C4F6O3	210	34.30	Acidifier, Arachidonic acid Inhibitor,
	anhydride				Increases Aromatic Amino acid
					decarboxylase activity, Inhibits
					production of uric acid, Urine
					acidifier
6.53	2-Methoxy-4-vinylphenol	C9H10	150.1	0.85	Not known

		02			
6.58	Lactose	C12H22	342.1	2.15	It is milk protein
		011			
7.37	1,3,5-Benzenetriol	C6H6O3	126	0.85	Not known
7.61	2-(N-	C6H14N	147.1	1.31	Anaphylactic, Antitumor,
	Morpholinyl)ethylphosphin	OP			Arylamine-N-Acetyltransferase-
	е				Inhibitor, Decreases
					Norepinephrine Production, Down
					regulates nuclear and cytosol
					androgen reuptake, GABA-nergic,
					Increases natural killer cell activity,
					Inhibits Production of Tumor
					Necrosis Factor, Myo-neuro-
					stimulant, N-Cholinolytic, NADH-
					Oxidase-Inhibitor, NADH-
					Ubiquinone-Oxidoreductase-
					Inhibitor
7.79	Benzaldehyde, 2-hydroxy-	C8H8O2	136.1	2.32	17 beta hydroxysteroid
	6-methyl-				dehydrogenase inhibitor,
					Arylamine-N-Acetyltransferase-
					Inhibitor, Testosteron hydroxylase
					inducer, Catechol o methyl
					Transferase inhibitor, methyl
					donar, methyl guanidine inhibitor
8.29	Ethyl pipecolinate	C8H15N	157.1	0.78	Not known
		02			
8.47	Trifluoromethyl t-butyl	C5H9F3	190	1.58	Blood thinner, C telopeptide
	disulfide	S2			inhibitor, Catechol o methyl
					Transferase inhibitor, Decrease
					Glutamate Oxaloacetate
					transaminase activity, Decreases
					Glutamate pyruvate transaminase,
					Glycosyltransferase inhibitor,

					Glutathione-S-Transfearse
					inhibitor, DNA topoisomerase
					inhibitor, decreae thromboxane
					activity
8.95	.betaD-Glucopyranose,	C6H10	162.1	2.09	17-beta-hydroxysteroid
	1,6-anhydro-	05			dehydrogenase inhibitor,
					Antiamyloid-Beta, Anti TGF-Beta,
					Beta-2-Receptor-Agonist, Beta-
					Adrenergic receptor blocker, Beta
					Galactosidase inhibitor, Beta-
					Glucuronidase inhibitor, Aldehyde
					oxidase inhibitor
9.04	9-Decenoic acid	C10H18	170.1	3.15	Acidifier, Arachidonic acid Inhibitor,
		02			Increases Aromatic Amino acid
					decarboxylase activity, Inhibits
					production of uric acid, Urine
					acidifier
9.23	Methyl 6-O-[1-	C11H22	250.1	0.82	Not known
	methylpropyl]betad-	06			
	galactopyranoside				
9.76	1,6-AnhydrobetaD-	C6H10	162.1	1.81	17-beta-hydroxysteroid
	glucofuranose	05			dehydrogenase inhibitor,
					Antiamyloid-Beta, Anti TGF-Beta,
					Beta-2-Receptor-Agonist, Beta-
					Adrenergic receptor blocker, Beta
					Galactosidase inhibitor, Beta-
					Glucuronidase inhibitor, Aldehyde
					oxidase inhibitor, anti-leukotrine
					D4, ER beta binder
9.98	1-Penten-3-one	C5H8O	84.1	1.38	Not known
10.18	Myo-Inositol, 4-C-methyl-	C7H14	194.1	25.29	Myo-neuro stimulant,
		O6			myocardiotonic,myolytic, myo
					relaxant, Catechol-O-Methyl-

					Transfearse inhibitor, Methyl
					donor, Methyl guanidine inhibitor
10.28	.alphaD-Xylofuranoside,	C7H14	178.1	1.38	Catechol-O-Methyl-Transferase-
	methyl 3-O-methyl-	05		2.00	Inhibitor, Methyl-Donor, Methyl-
		00			Guanidine-Inhibitor, Decrease
					Glutamate Oxaloacetate
					Transaminase, Decrease Oxalate
					Excretion, Down regulation of
					nuclear and cytosol androgen
					, reuptake, Inhibit Destruction of
					Glycosaminoglycans, Ornithine-
					Decarboxylase-Inhibitor, 5-Alpha-
					Reductase-Inhibitor, Alpha-Agonist,
					Alpha-Amylase-Inhibitor, Alpha-
					Glucosidase-Inhibitor, Alpha-
					Reductase-Inhibitor, HIF-1alpha-
					Inhibitor, IkappaB-alpha-
					Phosphorylation-Inhibitor, Increase
					Alpha-Mannosidase Activity,
					Interleukin-1-alpha-Inhibitor,
					Testosterone-5-Alpha-Reductase-
					Inhibitor, TNF-alpha-Inhibitor
10.45	n-Hexadecanoic acid	C16H32	256.2	2.26	Acidifiar Acidulant Arachidania
10.45		02	230.2	2.20	Acidifier, Acidulant, Arachidonic acid-Inhibitor, Increase Aromatic
		02			Amino Acid Decarboxylase Activity,
					Inhibit Production of Uric Acid,
					Anaphylactic, Antitumor, Arylamine-N-Acetyltransferase-
					Inhibitor, Decrease Norepinephrine
					Production, Down regulation of
					nuclear and cytosol androgen
					reuptake, GABA-nergic, Increase

					Natural Killer (NK) Cell Activity, Inhibit Production of Tumor
					Necrosis Factor, Myo-neuro-
					stimulant
12.24	Octadecanoic acid	C18H36	284.3	1.13	Acidifier, Acidulant, Arachidonic
		02			acid-Inhibitor, Increase Aromatic
					Amino Acid Decarboxylase Activity,
					Inhibit Production of Uric Acid
25.08	Isomethadone	C21H27	309.2	2.46	Not known
		NO			
30.27	Betulin	C30H50	442.4	2.08	It has a role as a metabolite, an
		02			antiviral agent, an analgesic, an
					anti-inflammatory agent and an
					antineoplastic agent