

On Generalizd A Regular-Closed Set in Nano Topoloical Spaces

S.Narmatha¹, S.Harshitha², P.Kaaviya³, R.Harshini⁴, S.Indhuja⁵

¹Assistant Professor, Sri Krishna Arts and Science College, Kuniamathr, Coimbatore. ^{2,3,4,5} PG Scholars, Sri Krishna Arts and Science College, Kuniamathr, Coimbatore

Abstract

In this article, we putforth the concepts of generalized α regular-closed sets in nano topological spaces. Furthermore, we study basic properties of generalized α regularcs and its relations with other nano sets. Also we discuss about generalized α regular-open sets and generalized α regular-neighbourhoods in nano topological spaces.

Keywords: Ngarcs , Ngcs , Ng*cs, Sgbcs, Ngaros.

Introduction

Lellis Thivagar putforth the concept of Nano topological spaces which is defined in terms of lower approximation, Upper approximation and boundary region. Bhuvaneswari introduced and investigated nano g-closed sets in nano topological spaces. S.Sekar and G.Kumar putforth the concept of $g\alpha r$ closed sets in topological spaces. The main aim of this paper is to introduce the concept of new form of generalized closed set called generalized α - regular closed set in nano topological spaces. Its relationship with other generalized closed sets is also discussed.

Preliminaries

Definition 2.1: Let P \subseteq (U, $\tau_R(x)$), then it is said to be

I. Na open set if $P \subseteq Nint(Ncl(Nint (P)))$.

II. Nano generalized closed set (briefly Ngc) if $Ncl(P) \subseteq Q$ wherever $P \subseteq Q$ and Q is nano open.

III. Nano weakly closed set (briefly *Nwc*) if $N(P) \subseteq Q$ wherever $P \subseteq Q$ and Q is nano semi open.

IV. Nano generalized*cs (briefly Ng^*c) if $Ncl(P) \subseteq Q$ wherever $P \subseteq Q$ and Q is Ng open.

V. Nano generalized α cs (briefly *Ng* α c) if *N* α *cl*(*P*) \subseteq *Q* wherever P \subseteq *Q* and Q is *N* α open.

VI. Nano generalized bcs (briefly *Ngbc*) if *Nbcl(P)* $\subseteq Q$ wherever P $\subseteq Q$ and Q is nano open in (U, $\tau_R(x)$).

VII. An Nano α generalized closed set (briefly $N\alpha gc$) if $N\alpha cl(P) \subseteq Q$ wherever $A \subseteq Q$ and Q is nano open in $(U, \tau_R(x))$.

VIII. Nano semi generalized *b* closed set (briefly *Nsgbc*) if *Nbcl(P)* \subseteq Q wherever P \subseteq Q and Q is nano semi open in (*U*, $\tau_R(x)$).

IX. Nano generalized αb cs (briefly $Ng\alpha bc$) if $Nbcl(P) \subseteq Q$ wherever $P \subseteq Q$ and Q is $N\alpha$ open in $(U, \tau_R(x))$. X. Nano regular generalized *b*cs (briefly *Nrgbc*) if *Nbcl(P) \subseteq Q* wherever $P \subseteq Q$ and Q is nano regular open in $(U, \tau_R(x))$.

XI. Nano generalized pre regular closed set (briefly *Ngprc*) if *Npcl(P)* \subseteq Q wherever P \subseteq Q and Q is nano regular open in (*U*, $\tau_R(x)$).

Nano Generalized α Regular-Closed Sets

Here, nano generalized α regular closed set introduced and its properties are discussed.

Definition 3.1: Let P \subseteq ($U, \tau_R(x)$), then it is said to be Nano generalized α regular closed set (briefly $Ng\alpha rcs$) if $N\alpha cl(P) \subseteq Q$ wherever P $\subseteq Q$ and Q is nano regular open in $(U, \tau_R(x))$.

Theorem 3.1: Each Ncs is *Ngαr*cs.

Proof. Suppose P is any closed set in $(U, \tau_R(x))$ such that $P \subseteq Q$, where G is Nro.Since $N\alpha cl(P) \subseteq Ncl(P) = H$. Hence $N\alpha cl(P) \subseteq Q$. Therefore P is $Ng\alpha rcs$ in $(U, \tau_R(x))$. The reverse implication does not imply,

Example 3.1.

Let U={x, y, z, w}, U/R={{x, z},{y},{w}}, X={x,y} and $\tau_R(x)=\{\phi,\{y\},\{x, y, z\},\{x, z\},\}$. Then **{x, y, z} is a** *Ng* α *r* closed but not a Ncs.

Theorem 3.2: Each *Ng*αcs is *Ng*αrcs.

Proof. Suppose P is any $Ng\alpha cs$ in $(U, \tau_R(x))$. Let $P \subseteq Q$ and Q is Nros. Then Q is $Ng\alpha$ open. Hence $N\alpha cl(H) \subseteq G$. Hence P is $Ng\alpha r$ cs.

The reverse implication does not imply,

Example 3.2.

Let U={x, y, z, w}, U/R={{x, z},{y},{w}},X={x, y} and $\tau_R(x)=\{\phi,\{y\},\{x, y, z\},\{x, z\},U\}$. Then **{x, y} is a** *Ngarcs* but not a *Ngacs*.

Theorem 3.3: Each *N*α*g*cs is *Ng*α*r*cs.

Proof. Suppose *H* is any *N* α *g*cs in (*U*, $\tau_R(x)$). Let *H* \subseteq *G* and *G* is Nros. Then *G* is open. Hence *N* α *cl*(*H*) \subseteq *G*. Hence *H* is *Ng* α *r*cs.

The reverse implication does not imply,

Example 3.3.

Let U={x, y, z, w}, U/R={{x, z},{y},{w}},X={x, y} and $\tau_R(x)=\{\phi,\{y\},\{x, y, z\},\{x, z\},U\}$. Then **{y, z} is a** *Ngarcs* but not a *Nagcs*.

Theorem 3.4: Each *Ng*α*r*cs is *Ngpr*cs.

Proof. Suppose P is $Ng\alpha rcs$ in $(U, \tau_R(x))$ and Q be any Nros containing P.Then Npcl(P) $\subseteq N\alpha cl(P) \subseteq Q$.Hence $Npcl(P) \subseteq Q$. Hence P is Ngprcs.

The reverse implication does not imply,

Example 3.4.

Let U={x, y, z, w}, U/R={{x, z},{y},{w}}, X={x, y} and $\tau_R(x)=\{\phi,\{y\},\{x, y, z\},\{x, z\},U\}$. Then **{x}** is a *Ngprcs* but not a *Ngarc*.

Theorem 3.5. Each *Ngcs* is *Ngαrcs*.

Proof. Suppose *P* is any *Ng*cs in $(U, \tau_R(x))$ and Q be any Nros containing P. Since every Nros is nano open, $N\alpha cl(P) \subseteq Ncl(P) \subseteq Q$. Hence $N\alpha cl(P) \subseteq Q$. Hence Q is $Ng\alpha rcs$.

The reverse implication does not imply,

Example 3.5.

Let U={x, y, z, w}, U/R={{x, z},{y},{w}},X={x, y} and $\tau_R(x)=\{\phi,\{y\},\{x, y, z\},\{x, z\},U\}$. Then {x, y} is a Ngarcs but not a Ngcs.

Theorem 3.6. Each *Nw*cs is *Ngαr*cs.

Proof. Suppose P is any Nwcs in $(U, \tau_R(x))$ and Q be any Nros containing P. As every Nros is nano semi open, $N\alpha cl(P) \subseteq Ncl(P) \subseteq Q$. Therefore $N\alpha cl(P) \subseteq Q$. Hence P is $Ng\alpha rcs$.

The reverse implication does not imply,

Example 3.6.

Let U={x, y, z, w}, U/R={{x, z},{y},{w}},X={x, y} and $\tau_R(x)=\{\phi,\{y\},\{x, y, z\},\{x, z\},U\}$. Then **{y, w} is a** *Ngarc* but not a *Nwc*.

Theorem 3.7. Each Ng^*cs is $Ng\alpha rcs$.

Proof. Suppose P is any Ng^*cs in $(U, \tau_R(x))$ and Q be any Nros containing H. Since every regular open is Ng open, $N\alpha cl(P) \subseteq Ncl(P) \subseteq Q$. Therefore $N\alpha cl(P) \subseteq Q$. Hence P is $Ng\alpha rcs$.

The reverse implication does not imply,

Example 3.7.

Let U={x, y, z, w}, U/R={{x, z},{y},{w}},X={x, y} and $\tau_R(x)=\{\phi,\{y\},\{x, y, z\},\{x, z\},U\}$. Then {x, y, z} is a Ng α r closed but not a Ng^{*} closed.

Characteristics of Ngar Closed Sets

Theorem 4.1. If P and K are Ngarcs in $(U, \tau_R(x))$ then P UK is Ngarcs in $(U, \tau_R(x))$.

Proof. Suppose *H* and *K* are *Ngarcs* in $(U, \tau_R(x))$ and *G* be any Nros such that $P \cup K \subseteq Q$. Therefore *Nacl(P) \subseteq Q*, *Nacl(K) \subseteq Q*. Thus *Nacl(P \cup K) = Nacl(P) \cup Nacl(K) \subseteq Q*. Therefore *P ∪ K* is *Ngarcs* in $(U, \tau_R(x))$.

Theorem 4.2. If a set P is Ngacs then Nacl(P)–P contains no non empty Nrcs.

Proof. Suppose K is a Nrcs in $(U,\tau_R(x))$ such that $K \subseteq N\alpha cl(P)-P$. Then $P \subseteq (U,\tau_R(x))-K$. Since P is Ngarcs and $(U,\tau_R(x))-K$ is Nro then $N\alpha cl(P) \subseteq (U,\tau_R(x))-K$. (i.e.) $K \subseteq (U,\tau_R(x))-N\alpha cl(P)$. So $K \subseteq ((U,\tau_R(x))-N\alpha cl(P)) \cap (N\alpha cl(P)-P)$. Therefore $K=\varphi$

Theorem 4.3. If $P \subseteq Y \subseteq (U, \tau_R(x))$ and For, if P is Ngarcs in $(U, \tau_R(x))$ then P is Ngarcs relative to Y.

Proof. Given that $P \subseteq Y \subseteq (U, \tau_R(x))$ and P is Ngarcs in $(U, \tau_R(x))$. To prove that P is Ngarcs relative to Y. Let us assume that $P \subseteq Y \cap Q$, where Q is Nro in $(U, \tau_R(x))$. Since P is Ngar cs, $P \subseteq Q$ implies Nacl $(P) \subseteq Q$. It follows that $Y \cap Nacl (P) \subseteq Y \cap Q$. That is P is garcs relative toY.

Theorem 4.4. For $x \in (U, \tau_R(x))$, then the set $(U, \tau_R(x)) - \{x\}$ is a Ng α rcs or Nro.

Proof. Suppose that $(U,\tau_R(x)) - \{x\}$ is not Nro, then $(U,\tau_R(x))$ is the only Nros containing $(U,\tau_R(x)) - \{x\}$. (i.e.) $N\alpha cl((U,\tau_R(x))-\{x\}) \subseteq (U,\tau_R(x))$. Then $(U,\tau_R(x))-\{x\}$ is $Ng\alpha rc$ in $(U,\tau_R(x))$.

Remark 4.1. The intersection of any two subsets of Ngarcs in $(U, \tau_R(x))$ is not Ngarcs in $(U, \tau_R(x))$.

Theorem 4.5. If P is both Nro and Ng α rcs in (U, $\tau_R(x)$), then P is N α cs.

Proof. As P is Nro and Ngar closed in $(U, \tau_R(x))$, Nacl(P) \subseteq P. But always P \subseteq Nacl(P). Therefore P=Nacl(P). Thus P is Nacs.

Note 4.1. Ngscs and Ng α rcs are independent to each other as seen from the following examples.

Example 4.1

Let U={x, y, z, w}, U/R={{x, z},{y},{w}},X={x, y} and $\tau_R(x)=\{\phi,\{y\},\{x, y, z\},\{x, z\},U\}$. Then {x} is a Ngscs but not Ngarcs. Also {x, y, z} is a Ngar closed but not a Ngs closed.

Note 4.9. Ngbcs and Ng α rcs are independent to each other as seen from the following examples.

Example 4.2.

Let U={x, y, z, w}, U/R={{x, z},{y},{w}},X={x, y} and $\tau_R(x)=\{\phi,\{y\},\{x, y, z\},\{x, z\},U\}$. Then the set {x} is a Ngb closed but not a Ngar closed. Similarly the set {x, y, z} is a Ngar closed but not a Ngb closed.

Note 4.2. Nsgbcs and Ng α rcs are independent to each other as seen from the following examples.

Examples 4.3.

Let U={x, y, z, w}, U/R={{x, z},{y},{w}}, X={x, y} and $\tau_R(x)=\{\phi,\{y\},\{x, y, z\},\{x, z\},U\}$. Then **{z}** is a *Nsgb* closed but not *Ngar* closed. Similarly **{y, z}** is a *Ngar* closed but not *Nsgb* closed.

Nano Generalised α Regular Open Sets and Nano Generalized α Regular Neighbourhoods

Here, we putforth Nano generalized α regular open sets(briefly *Ng* α *ro*) and nano generalized α regular nbd (briefly *Ng* α *r* nbd) in topological spaces by using the notions of *Ng* α *r* open sets and study some of their properties.

Definition 5.1. Let P \subseteq ($U, \tau_R(x)$) then it is said to be Nano generalized α regular open set (briefly Ngaris) if A^c is Ngar closed in ($U, \tau_R(x)$). We denote the family of all Ngaros in ($U, \tau_R(x)$), by Ngar O($U, \tau_R(x)$).

Theorem 5.1. Let P and K be Ngaros in $(U, \tau_R(x))$. Thus P \cap K is Ngaros in $(U, \tau_R(x))$.

Proof. Let P and K are Ngaros in $(U, \tau_R(x))$. Then P^c and K^c are Ngarcs in $(U, \tau_R(x))$. P^c \cup K^c is also Ngarcs in $(U, \tau_R(x))$.(i.e.) H^c \cup K^c = $(P \cap K)^c$ is a Ngarcs in $(U, \tau_R(x))$. Hence P \cap K, Ngaros in $(U, \tau_R(x))$.

Theorem 5.2. Let Nint (P) $\subseteq K \subseteq P$ and if P is Ngaro in $(U, \tau_R(x))$, then K is Ngaro in $(U, \tau_R(x))$.

Proof. For, if Nint (P) $\subseteq K \subseteq P$ and if P is Ngaro in $(U, \tau_R(x))$, then $P^c \subseteq K^c \subseteq Ncl(P^c)$ Since P^c is Ngar closed in $(U, \tau_R(x))$. Hence K is Ngar open in $(U, \tau_R(x))$.

Definition 5.2. Let x be a point in $(U, \tau_R(x))$. A subset N of $(U, \tau_R(x))$ is said to be Ng α rnbd of x iff there exists a Ng α ros Q such that x in QN.

Definition 5.3. Let $N \subseteq (U, \tau_R(x))$ is called a *Ngarnbd* of $P \subset (U, \tau_R(x))$ iff there exists a *Ngaros* Q such that $P \subset Q \subset N$.

Theorem 5.3. Each nbd *N* of *x* in $(U, \tau_R(x))$ is called a *Ng* α *r*nbd of *x*.

Proof. Suppose *N* be a nbd of a point *x* in $(U, \tau_R(x))$. To prove that *N* is a *Ng* α rnbd of *x*.By definition of nbd, there exists a Nos Q such that *x* in Q \subset *N*. Thus *N* is a *Ng* α rnbd of $(U, \tau_R(x))$.

Remark 5.1. In particular, a Ng α rnbd of x in $(U, \tau_R(x))$ need not be a nbd of x in $(U, \tau_R(x))$.

Remark 5.2. The Ngarnbd N of x in $(U, \tau_R(x))$ need not be a Ngar open in $(U, \tau_R(x))$.

Theorem 5.4. Let $N \subseteq (U, \tau_R(x))$ is $Ng\alpha r$ open, then N is $Ng\alpha r$ nbd of each of its points.

Proof. Let *N* is $Ng\alpha r$ open. Suppose $x \in N$. We prove that *N* is $Ng\alpha r$ nbd of *x*. For *N* is a $Ng\alpha r$ open set such that *x* in $N \subset N$. Since *x* is an arbitrary point of *N*, it follows that *N* is a $Ng\alpha r$ nbd of each of its points.

Theorem 5.5. Suppose $(U, \tau_R(x))$ be a nano topological space. If F is $Ng\alpha r$ closed subset of $(U, \tau_R(x))$ and x in F^c . Then there exists a $Ng\alpha r$ nbd N of x such that $N \cap F = \varphi$.

Proof. Suppose *F* is *Ngar* closed subset of $(U, \tau_R(x))$ and *x* in F^c . Suppose F^c is *Ngar* open set of $(U, \tau_R(x))$. Hence by Theorem, F^c contains a *Ngar*nbd of each of its points. Hence there exists a *Ngar*nbd *N* of *x* such that $N \subset F^c$. (i.e.) $N \cap F = \varphi$.

Definition 5.4. Let x be a point in $(U, \tau_R(x))$. The set of all $Ng\alpha r$ nbd of x is called the $Ng\alpha r$ nbd system at x, and is denoted by $Ng\alpha r - N(x)$.

Theorem 5.6. Suppose x be a point in a nano topological space and each $x \in (U, \tau_R(x))$, Let $Ng\alpha r - N(U, \tau_R(x))$ be the collection of all $Ng\alpha r$ nbd of x. Then the following holds.

- 1. $\forall x \in (U, \tau_R(x)), Ng\alpha r N(x) \varphi$.
- 2. $(N \in Ng\alpha r N(x) \Rightarrow x \in N.$
- 3. $N \in Ng\alpha r N(x), M \supset N \Rightarrow M \in Ng\alpha r N(x).$
- **4.** $N \in Ngar N(x)$, $M \in Ngar N(x) \Rightarrow N \cap M \in Ngar N(x)$, if finite intersection of Ngaros is Ngar open.
- 5. $N \in Ng\alpha r N(x) \Rightarrow$ there exists $M \in Ng\alpha r N(x)$ such that $M \subset N$ and $M \in Ng\alpha r N(y)$ for every $y \in M$.

Proof.

- 1. As $(U, \tau_R(x))$ is $Ng\alpha ros$ it is a $Ng\alpha rnbd$ of each $x \in (U, \tau_R(x))$. Hence there exists at least one $Ng\alpha rnbd$ (namely $(U, \tau_R(x))$) for each $x \in (U, \tau_R(x))$. Therefore $Ng\alpha r - N(x) \neq \varphi$ for each $x \in (U, \tau_R(x))$.
- 2. Let $N \in Ng\alpha r N(x)$, then N is Ng αr nbd of x. By Defn. of Ng αr nbd, $x \in N$.
- 3. Suppose $N \in Ng\alpha r N(x)$ and $M \supset N$. Then there is a $Ng\alpha ros Q$ such that $x \in Q \subset N$. Since $N \subset M, x \in Q \subset M$ and so M is $Ng\alpha r$ nbd of x. Hence $M \in Ng\alpha r N(x)$.
- 4. (iv) Suppose $N \in Ng\alpha r N(x)$, $M \in Ng\alpha r N(x)$. Then by Defn. of $Ng\alpha rnbd$, there exists $Ng\alpha r$ open sets Q1 and Q2 such that $x \in Q1 \subset N$ and $x \in Q2 \subset M$. Hence $x \in Q1 \cap Q2 \subset N \cap M$ (1) As $Q1 \cap Q2$ is a $Ng\alpha r$ open set, it follows from (1) that $N \cap M$ is a $Ng\alpha rnbd$ of x. Thus $N \cap M$ in $Ng\alpha r N(x)$.
- 5. (V)Suppose N in $Ng\alpha r N(x)$. Then there is a $Ng\alpha r$ open set M such that $x \in M \subset N$. As M is $Ng\alpha r$ open set, it is $Ng\alpha r$ nbd of each of its points. Thus $M \in Ng\alpha r N(y)$ for each $y \in M$.

Conclusion

Here, we give notion of new class of set namely $Ng\alpha rcs$ in Nano topological spaces. Basic properties and characteristics of $Ng\alpha rcs$ are being discussed. Also the relationship between $Ng\alpha r$ closed with other generalized closed sets are investigated further we have putforth the concepts of $Ng\alpha r$ open set and $Ng\alpha rnbd$.

References

- K. Bhuvaneswari and A. Ezhilaerasi, On Nano semi-generalised and Nano semi-generalised closed sets in Nano topological spaces, International Journal of Mathematics and Computer Applications Research, 4(3)(II)(2014)(117-124).
- 2. K. Bhuvaneswari and K. Mythili Gnanapriya, Nano generalised closed sets, International Journal of Scientific and Research Publications, 4(5)(II)(2014)(1-3).
- 3. M. Lellis Thivagar and Carmel Richard , On Nano forms of weakly open sets, International Journal of Mathematics and Statistics Invention, 1(1)(2013)(31-37).
- 4. S. Sekar and G. Kumar On gαr-closed sets in topological spaces, International Journal of Pre and Applied Mathematics, Volume 108 N0.4(2016)(791-800).
- 5. V. Rajendran, P. Sathishmohan and K. Indirani, On Nano star generalized closed sets in Nano topological spaces, International Journal of Applied Research, 1(9)(2015)(04-0).