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I Introduction 

Fractional calculus is a generalization of ordinary differentiation and integration to arbitrary non-

integer order. Nowadays, an increasing attention is paid by the researches in the development of 

fractional differential equations (FDEs) in several fields such as mechanics, thermal systems, image 

processing, viscoelastic and fluid flow [1-3]. Various analytical and numerical methods are proposed 

to solve the linear and nonlinear FDEs. Some of them are Homotopy Analysis Method [4], Adomian 

Decomposition Method [5] and Differential Transform Method [6]. 

Daftardar-Gejji and Jafari [7] introduced the iterative method for obtaining the numerical 

solution of nonlinear functional equations. Iterative method is one of the important method to solve 

nonlinear differential equations. Jafari et al. [8] developed Iterative Laplace Transform method to 

obtain the numerical solution of a system of fractional partial differential equations. Later, many 

researches applied several transforms such as Elzaki [9], Sumudu [10] and Mahgoub [11] in this 

iterative method to obtain the numerical solution of fractional partial differential equations. Kharrat 

and Toma [12] introduced anew transform called Kharrat-Toma Transform to solve the ordinary 

differential equations with initial conditions. Toma and Alturky [13] combined a Hybrid Kharrat-
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Toma transform with Homotopy Perturbation method for finding the exact and approximate 

solutions of linear and nonlinearIntegro-differential equations. 

In this paper, Kharrat-Toma Iterative Method (KTIM) is developed for solving fractional 

differential equation numerically. The paper is organized as follows: Section 2 gives the fundamental 

definitions and properties of fractional calculus. Section 3 contains the KharratToma Transform of 

fractional integrals and derivatives. Section 4 delivers the construction of KTIM. Section 5 presents 

some numerical examples of FDEs to show the effectiveness of the proposed method by means of 

some comparison with exact solution and MahgoubAdomian Decomposition Method (MADM) [14]. 

II Preliminaries and Notations 

In this section, some basic definitions and properties of fractional calculus are given. 

Definition 1: A real function f(t), t > 0 is said to be in the space Cμ, μ ∈  ℝif there exists a real 

number p > μ such thatf(t) = tpf1(t) where f1(t) ∈  C[0,∞) and it is said to be in the spaceCμ
n if 

and only if f (n) ∈ Cμ, n ∈  ℕ. [2] 

Definition 2:Riemann Liouville fractional integral operatorIt
α of order α ∈ R,α > 0 of functionf(t) ∈

Cμ,μ ≥ −1  is defined as [15], 

It
αf(t) = Dt

−αf(t) =
1

Γα
∫ (t − τ)α−1f(τ)dτ,        t > 0
t

0

                                (1) 

It
0f(t) = f(t) 

whereΓ(. ) denotes the Gamma function. 

Definition 3: Riemann-Liouville fractional derivative Dt
αRL f(t) of order α ∈ R, α > 0 of functionf(t) ∈

Cμ, μ ≥ −1  is defined as [16], 

Dt
αRL f(t) = (

d

dt
)
n

(It
n−αf(t)) 

=
1

Γ(n − α)
(
d

dt
)
n

∫
f(τ)dτ

(t − τ)α−n+1
 ,   t > 0

t

0

, n − 1 < α < n           (2) 

Definition 4:Caputo fractional derivative of order α ∈ R, α > 0 of function f(t) ∈ Cμ, 

μ ≥ −1is given by [16], 

Dt
αc f(t) = It

n−αDnf(t) =

{
 
 

 
 1

Γ(n − α)
∫(t − τ)n−α−1fn(τ)dτ,       n − 1 < α < n, n ∈ ℕ

t

0

dnf(t)

dtn
,                                               α = n

(3) 

III Kharrat-Toma Transform of Fractional Integrals and Derivatives 

Kharrat-Toma Transform of the function f(t) for t ≥ 0 is defined by the integral 
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                       B[f(t)] = G(s) = s3∫ f(t)e
−t

s2dt,     t ≥ 0,
∞

0

                                             (4) 

and it is denoted by the operator B(. ) 

If B[f(t)] = G(s), thenf(t) is called the inverse Kharrat-Toma Transform of G(s).In symbol, 

                          f(t) = B−1[G(s)] = B−1 [s3∫ f(t)e
−t

s2dt
∞

0

] 

whereB−1 is called the inverse Kharrat-Toma Transform operator. 

Kharrat-Toma Transform of simple functions are given below: 

(i)B[1] = s5    

(ii)     B[tn] = n! s2n+5 = Γ(n + 1)s2n+5,   n ≥ 0                                                           (5) 

(iii)     B[sin at] =
as7

1 + a2s4
 

(iv)     B[cos at] =
s5

1 + a2s4
 

(v)    B[sinh at] =
as7

1 − a2s4
 

(vi)    B[cosh at] =
s5

1 − a2s4
 

Some basic properties of the Kharrat-Toma Transform are given as follows: 

Property 1: The Kharrat-Toma Transform is a linear operator. That is, if c1, c2, …,cnare non-zero 

constants, then 

B [∑ci

n

i=1

fi(t) ] =∑ci

n

i=1

B[fi(t) ] 

Property 2:Let n ≥ 1 and G(s) be the Kharrat-Toma Transform of the function f(t). The Kharrat-

Toma Transform of nth derivative of f(t) is given by 

               B[fn(t)] =
1

s2n
G(s) −∑s−2n+2k+5fk(0)

n−1

k=0

                                                                (6) 

Property 3: Let M(s) and N(s) denote the Kharrat-Toma Transform of f(t) and g(t) respectively. If 

(f ∗ g)(t) = ∫ f(τ)
t

0

g(t − τ)dτ                                                                                    (7) 

where∗ denotes convolution of f and g, then the Kharrat-Toma Transform of the convolution of f(t) 

and g(t) is   

 B[f(t) ∗ g(t)] =
1

s3
M(s)N(s) 
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Some fundamental properties of Kharrat-Toma Transformnecessary in solving FDEs are given in the 

following theorems. 

Theorem 1:Let n ∈ ℕ and α > 0 be such that n − 1 ≤ α < n and G(s) be the Kharrat-Toma 

Transformof f(t), then Kharrat-Toma Transform of  Riemann-Liouville fractional integral of f(t) of 

order α is given by 

 B[Iαf(t)] = B[ Dt
−αRL f(t)] = s2αG(s)      

Proof:  

We know that the definition of Riemann-Liouville fractional integral is of the form 

Iαf(t) = Dt
−α RL f(t) =

1

Γ(α)
∫ (t − τ)α−1f(τ)dτ
𝐭

𝟎

 

                                                      =
1

Γ(α)
[tα−1 ∗ f(t)]                                                                      (8) 

Applying the Kharrat-TomaTransform in Eqn. (8), we obtain 

              B[Iαf(t)] =
1

Γ(α)

1

s3
B[tα−1]B[f(t)] 

                                   =
1

Γ(α)

1

s3
[Γ(α)s2α+3]G(s) 

B[Iαf(t)] = B[ Dt
−αRL f(t)] = s2αG(s)    (9)  

This completes the proof. 

Theorem 2:Let n ∈ ℕ and α > 0 be such that n − 1 < α ≤ n and G(s) be the Kharrat-Toma 

Transform of the function f(t), then theKharrat-TomaTransform of Riemann-Liouville fractional 

derivative of f(t) of order α is given by 

             B[ Dt
αRL f(t)] = s−2αG(s) −∑ s−2k+3[ Dt

α−k−1f(t)]
t=0

n−1

k=0

                                    (10) 

Proof: 

Let         Dt
αf(t) = g(n)(t) =

dn

dtn
g(t) 

Then,  

                 g(t) =
d−n

dt−n
dn

dtn
g(t) 

=
d−n

dt−n
Dt
αf(t) 

 g(t) = Dt
−(n−α)

f(t)                 (11) 

Applying Kharrat-TomaTransform on both sides of Eqn. (11) and by using Theorem 1, we get 

 H(s) = B[g(t)] = B [ Dt
−(n−α)f(t)] = s2n−2αG(s)   (12) 
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Also from Eqn. (6), we have 

B[ Dt
αRL f(t)] = B [

dn

dtn
g(t)] 

                                        =
1

s2n
H(s) −∑s−2k+3gn−k−1(t)

n−1

k=0

|t=0                                             (13) 

From the definition of Riemann-Liouville fractional derivative, we obtain 

g(n−k−1)(t) =
dn−k−1

dtn−k−1
g(t)|t=0 

                                     =
dn−k−1

dtn−k−1
Dt
−(n−α)

f(t)|t=0 

 = Dt
n−k−1 [ Dt

−(n−α)
f(t)|t=0] 

= Dt
α−k−1f(t)|t=0              (14) 

Hence, by substituting the Eqns. (12) and (14) in Eqn. (13), we get 

           B[ Dt
α RL f(t)] = s−2αG(s) −∑s−2k+3 Dt

α−k−1f(t)|t=0

n−1

k=0

n ∈ ℕ 

Theorem 3: Let n ∈ ℕ and α > 0 be such that n − 1 < α ≤ n and G(s) be the Kharrat-

TomaTransform of the function f(t), then the Kharrat-Toma Transform of Caputo fractional 

derivative of f(t) of order α is given by 

         B[ Dc t
αf(t)] = s−2αG(s) −∑s2k−2α+5fk(t)|t=0

n−1

k=0

n − 1 < α ≤ n,   n ∈ ℕ         (15) 

Proof 

Let g(t) = f (n)(t) then, by the definition of Caputo fractional derivative we obtain 

Dc t
αf(t) =

1

Γ(n − α)
∫ (t − τ)n−α−1fn(τ)dτ, t > 0
t

0

 

                             =
1

Γ(n − α)
∫ (t − τ)n−α−1g(τ)dτ
t

0

 

= Dt
−(n−α)

g(t)               (16) 

Applying the Kharrat-Toma Transform on both sides of Eqn. (16) and using Theorem 1we get, 

B[ Dc t
αf(t)] = B [ Dt

−(n−α)
g(t)] = s2n−2αH(s)            (17) 

Also, we have B[g(t)] = B[f (n)(t)] 

H(s) =
1

s2n
G(s) −∑ s−2n+2k+5fk(t)|t=0

n−1

k=0

 

Hence, Eqn. (17) becomes, 
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B[ Dc t
αf(t)] = s2n−2α [

1

s2n
G(s) −∑s−2n+2k+5fk(t)|t=0

n−1

k=0

] ,   n − 1 < α < n 

                                    = s−2αG(s) −∑ s2k−2α+5fk(t)|t=0

n−1

k=0

 

This completes the proof. 

IV. Construction of KTIM for Solving Fractional Differential Equation 

Consider the following nonlinear fractional differential equation 

 Dαy(t) + Ry(t) + Ny(t) = f(t)c ,t ≥ 0, for n − 1 < α ≤ n , n ∈ ℕ           (18) 

subject to the initial condition 

y(k)(0) = bk,                        (19) 

wherebk are known real constants. Dαy(t)C denotes the fractional order derivative in Caputo sense. 

R is a linear operator. N is a nonlinear operator and f(t) is a known function. Let [0, T] be the interval 

over which we need to find the solution of the above initial value problem. 

Applying the Kharrat-TomaTransform to both sides of Eqn. (18) and by using the linearity of Kharrat-

Toma Transform, the result is                    

 B( Dαy(t)) + B(R(y(t))) + B(N(y(t))) = B(f(t))c  

Using Theorem 3 in the above equation, we get 

s−2αB(y(t)) = ∑s2k−2α+5y(k)(0)

n−1

k=0

+ B(f(t)) − B(R(y(t))) − B(N(y(t))) 

                  B(y(t)) =
1

s−2α
∑s2k−2α+5y(k)(0)

n−1

k=0

+
1

s−2α
B(f(t)) −

1

s−2α
B(R(y(t))) 

−
1

s−2α
B(N(y(t)))   (20) 

The KTIM represents the solution as an infinite series 

y(t) = ∑yn(t)

∞

n=0

                                                                                                                    (21) 

Now, the linear operator R becomes, 

          R (∑yn(t)

∞

n=0

) = ∑R(yn(t))

∞

n=0

                                                                                                           (22) 

and the nonlinear term N(y(t)) is decomposed as  

           N (∑yn(t)

∞

n=0

) = N(y0(t)) +∑ {N(∑yk(t)

n

k=0

) − N(∑yk(t)

n−1

k=0

)}

∞

n=1

                            (23) 
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Substituting Eqns. (21) - (23) in Eqn. (20), we have 

 B (∑yn(t)

∞

n=0

) =
1

s−2α
[∑ s2k−2α+5yk(0)

n−1

k=0

+ B(f(t))] 

                 − [
1

s−2α
B [∑R(yn( t)) + N(y0( t))

∞

n=0

+∑{N(∑yk( t)

n

k=0

) − N(∑yk( t)

n−1

k=0

)}

∞

n=1

]] (24) 

Hence the iterations are defined by the following recursive algorithm 

               B(y0(t)) =
1

s−2α
[∑ s2k−2α+5yk(0)

n−1

k=0

+ B(f(t))]                                                      (25) 

              B(y1(t)) = −
1

s−2α
B[R(y0(t)) + N(y0)]                                                                       (26) 

 ⋮ 

       B(yn(t)) = −
1

s−2α
B [R(yn−1(t)) + {N(∑yk(t)

n

k=0

) − N(∑yk(t)

n−1

k=0

)}] , n ≥ 1   (27) 

Using the initial conditions (19) and applying the inverse Kharrat-TomaTransform to equations (25)-

(27) we obtain the values y0(t), y1(t), y2(t), … , yn(t) recursively. 

Therefore the n-term approximate solution is given by 

y(t) = y0(t) + y1(t) + y2(t) + ⋯+ yn(t),                n = 1, 2,… 

V Numerical Examples 

Example 1 

Consider the nonlinear fractional differential equation 

Dαy(t) = y2 + 1c ,    n − 1 < α ≤ n, 0 < t ≤ 1,    (28) 

subject to the initial conditions 

y(i)(0) = 0,        i = 0, 1, 2, … ,m − 1     (29) 

The exact solution of Eqn. (28) isy(t) = tan t when α = 1 

Applying the Kharrat-Toma Transform in the Eqn. (28), then 

 B( Dαy(t)) = B(y2 + 1)c  

Using Theorem 3 and the initial conditions (29), then we have 

              B(y(t)) =
1

s−2α
(B(y2)) +

s5

s−2α
                                                                                       (30) 
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Applying the inverse Kharrat-Toma Transform in Eqn. (30) we obtain 

y(t) = B−1 [
1

s−2α
(B(y2)) +

s5

s−2α
] 

In the view of the recurrence relations (25) – (27) we get 

y0(t) = B
−1 [

s5

s−2α
] 

y1(t) = B
−1 [

1

s−2α
B(y0

2)] 

y2(t) = B
−1 [

1

s−2α
B((y0 + y1)

2)] − B−1 [
1

s−2α
B(y0

2)] 

y3(t) = B
−1 [

1

s−2α
B((y0 + y1 + y2)

2)] − B−1 [
1

s−2α
B((y0 + y1)

2)] 

 ⋮ 

 

Therefore,  

             y0(t) =
tα

Γ(α+ 1)
 

             y1(t) =
Γ(2α + 1)

(Γ(α+ 1))
2

t3α

Γ(3α+ 1)
 

             y2(t) = (
Γ(2α+ 1)

Γ(3α+ 1)
)

2
Γ(6α + 1)

Γ(7α + 1)

t7α

(Γ(α+ 1))
4 +

2Γ(2α+ 1)Γ(4α+ 1)

(Γ(α+ 1))
3
Γ(3α+ 1)

t5α

Γ(5α+ 1)
 

 ⋮ 

The approximate solution is given by 

 y(t) = y0 + y1 + y2 + y3 +⋯ 

 i. e. ,     y(t) =
tα

Γ(α+ 1)
+

Γ(2α + 1)

(Γ(α+ 1))
2

t3α

Γ(3α+ 1)
+ (

Γ(2α+ 1)

Γ(3α+ 1)
)

2
Γ(6α+ 1)

Γ(7α+ 1)

t7α

(Γ(α + 1))
4 

          +
2Γ(2α+ 1)Γ(4α+ 1)

(Γ(α+ 1))
3
Γ(3α+ 1)

t5α

Γ(5α+ 1)
+⋯        

The following figure 1 is the graphical representation of exact solution and the numerical solution of 

Eqn. (28) using KTIM for α = 0.5, 1, 1.5 and 2.5. 
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Fig. 1: Exact and numerical solutions of Eqn. (28) 

Table 1 shows the solution of Example 1 for different values of  α. The absolute error is calculated by 

finding the difference between the discrete values and the exact solutions for    0 < t ≤ 1.  

Comparison between KTIM and MADM of Eqn. (28) is shown in Table 1. KTIM gives the good result 

than MADM.  

Table 1: Numerical Solution of Eqn. (28) using KTIM for different values of 𝛂 

𝐭 
𝛂 = 𝟏 

𝛂 = 𝟎. 𝟓 𝛂 = 𝟏. 𝟓 𝛂 = 𝟐. 𝟓 
MADM Exact KTIM Absolute Error 

0.1 0.100335 0.100335 0.100335 1.553710E-14 0.391970 0.023790 0.000952 

0.2 0.202710 0.202710 0.202710 3.269958E-11 0.623658 0.067330 0.005383 

0.3 0.309336 0.309336 0.309336 2.963048E-09 0.890524 0.123896 0.014833 

0.4 0.422793 0.422793 0.422793 7.497385E-08 1.261590 0.191362 0.030450 

0.5 0.546302 0.546302 0.546302 9.528815E-07 1.851229 0.268856 0.053197 

0.6 0.684135 0.684137 0.684129 7.912239E-06 2.881687 0.356238 0.083925 

0.7 0.842269 0.842288 0.842239 4.946815E-05 4.797168 0.453950 0.123412 

0.8 1.029511 1.029639 1.029586 5.253994E-05 8.485896 0.563007 0.172391 

0.9 1.259443 1.260158 1.260087 7.135820E-05 15.706593 0.685056 0.231574 

1.0 1.553901 1.557408 1.557313 9.462219E-05 29.888579 0.822511 0.301676 
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Example 2 

Consider the nonlinear fractional differential equation 

Dαy(t) = 2y − y2 + 1c ,    0 < α ≤ 1, 0 < t ≤ 1,              (31) 

Subject to the initial condition 

 y(0) = 0              (32)The 

Exact solution of Eqn. (31) for α = 1 (ODE) is  

 y(t) = 1 + √2 tan h(√2t +
1

2
ln (

√2−1

√2+1
)) 

Applying the Kharrat-Toma Transform in the Eqn. (31), then 

 B( Dαy(t)) = B(2y − y2 + 1)c  

Using Theorem 3 and the initial conditions (32), then we have 

B(y(t)) =
2

s−2α
B(y(t)) −

1

s−2α
(B(y2)) +

s5

s−2α
 

In the view of the recurrence relations (25) – (27) we get 

 y0(t) = B
−1 [

s5

s−2α
] 

y1(t) = B
−1 [

1

s−2α
(B(2y0(t)) − B(y0

2))] 

y2(t) = B
−1 [

1

s−2α
(B(2y1(t)) − (B((y0 + y1)

2) − B(y0
2)))] 

y3(t) = B
−1 [

1

s−2α
(B(2y2(t)) − (B((y0 + y1 + y2)

2) − B((y0 + y1)
2)))] 

⋮ 

Hence, 

             y0(t) =
tα

Γ(α+ 1)
 

             y1(t) =
2t2α

Γ(2α + 1)
−

Γ(2α+ 1)

(Γ(α+ 1))
2

t3α

Γ(3α+ 1)
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             y2(t) =
4t3α

Γ(3α+ 1)
−

t4α

Γ(4α+ 1)
[
2Γ(2α+ 1)

(Γ(α+ 1))
2 +

4Γ(3α+ 1)

Γ(α+ 1)Γ(2α+ 1)
]

+
t5α

Γ(5α+ 1)
[
2Γ(2α+ 1)Γ(4α+ 1)

Γ(3α+ 1)(Γ(α+ 1))
3 −

4Γ(4α+ 1)

(Γ(2α+ 1))
2]

− (
Γ(2α+ 1)

Γ(3α+ 1)
)

2
Γ(6α+ 1)

Γ(7α+ 1)

t7α

(Γ(α + 1))
4 +

4Γ(5α+ 1)

(Γ(α + 1))
2
Γ(3α+ 1)

t6α

Γ(6α+ 1)
 

 ⋮ 

The approximate solution is  

y(t) =
tα

Γ(α+ 1)
+

2t2α

Γ(2α+ 1)
−

Γ(2α + 1)

(Γ(α+ 1))
2

t3α

Γ(3α+ 1)
+

4t3α

Γ(3α+ 1)

−
t4α

Γ(4α+ 1)
[
2Γ(2α+ 1)

(Γ(α+ 1))
2 +

4Γ(3α + 1)

Γ(α+ 1)Γ(2α+ 1)
]

+
t5α

Γ(5α+ 1)
[
2Γ(2α+ 1)Γ(4α+ 1)

Γ(3α+ 1)(Γ(α+ 1))
3 −

4Γ(4α+ 1)

(Γ(2α+ 1))
2]

− (
Γ(2α+ 1)

Γ(3α+ 1)
)

2
Γ(6α+ 1)

Γ(7α+ 1)

t7α

(Γ(α + 1))
4 +

4Γ(5α+ 1)

(Γ(α + 1))
2
Γ(3α+ 1)

t6α

Γ(6α+ 1)
+⋯ 

Table 2 shows the solution of Eqn. (31)using KTIM for different values of  α when0 < t ≤ 1. The 

absolute error is calculated by finding the difference between the discrete values and the exact 

solutions for 0 < t ≤ 1. Comparison between KTIM and MADM of Eqn. (31) is shown in Table 2. 

KTIM gives the good result than MADM. 

Table 2: Numerical Solution of Eqn. (31) using KTIM for different values of 𝛂 

t 

𝛂 = 𝟏 

𝛂 = 𝟎. 𝟓 𝛂 = 𝟎. 7𝟓 𝛂 = 𝟎. 9𝟓 
MADM Exact KTIM 

Absolute 

Error 

0.1 0.110295 0.110295 0.110294 1.085150E-06 0.589477 0.245327 0.128802 

0.2 0.241977 0.241977 0.241950 2.682335E-05 0.929513 0.474291 0.275674 

0.3 0.395122 0.395105 0.394957 1.474432E-04 1.172488 0.708194 0.443322 

0.4 0.567934 0.567812 0.567398 4.142629E-04 1.344449 0.936359 0.628750 

0.5 0.756482 0.756014 0.755257 7.575056E-04 1.469506 1.147505 0.826323 

0.6 0.954756 0.953566 0.952589 9.775567E-04 1.569284 1.333420 1.028554 

0.7 1.155089 1.152949 1.152054 8.948357E-04 1.661190 1.490501 1.227099 

0.8 1.348968 1.346364 1.345790 5.736713E-04 1.757469 1.620123 1.413969 
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0.9 1.528179 1.526911 1.526506 4.056813E-04 1.864987 1.728113 1.582803 

1.0 1.676254 1.689498 1.688651 8.470841E-04 1.985521 1.823534 1.729998 

 

The following figure 2 is the graphical representation of exact solution and the numerical solution of 

Eqn. (31) using KTIM forα = 0.5, 0.75, 0.95 and 1. 

 

 

 

 

 

 

 

 

 

Fig. 2: Exact and numerical solutions of Eqn. (31) 

 

Conclusion 

In this paper, the Kharrat-Toma Transform of Riemann-Liouville and Caputo fractional integral and 

derivatives are proved in theorems. Also, the combined form of the Kharrat-Toma Transform and 

Iterative method is successfully applied to solve the fractional differential equations numerically. By 

comparing the numerical solution of FDEs using our proposed method with MADM, it can be 

concluded that KTIM gives good result than MADM. Therefore, the Kharrat-Toma Iterative Method is 

an efficient and effective method for finding numerical solutions of fractional differential equations.  
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