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Abstract: This paper considers the methods of modelling for the dose escalation process using the Bayesian hierarchical models. The phase 

I clinical trial data is analysed to find the optimum Maximum Tolerated Dose (MTD). In this paper we have considered the mixed logistic 

linear regression model to predict the dose limiting event with respect to the cohort effects and the doses. We have also developed a 

mixed linear regression model to predict the desirable outcome response in the study. The illustrations of the models have been conducted 

which is then analysed to find the MTD for the clinical trial study.  
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1. Introduction 

Dose escalation procedures in phase I trials is to avoid exposing too many patients to subtherapeutic doses while 

preserving safety and maintaining rapid accrual. (Ashby(2006)). 

 

Whitehead et.al (2006) studied in the setting of  the Bayesian decision theoretic procedures which considersthe 

doses which are chosen in a specific way such that it will maximise therapeutic effects and minimise side effects. 

The Dose Escalation studies considers the subjects which are repeatedly dosed,and the pharmacodynamic 

measurements relating to the pattern of the concentration of the drug during the hours following the clinical trial 

administration. Bayesian dose-escalation procedures for early phase I clinical trials in oncology are developed in 

this paper andthey are based on the measures of undesirable events and continuous measures of therapeutic 

benefit.  

 

Senn et.al (2007) examines the state of Bayesian thinking as Statistics in Medicine which   considers the 

applicability and uses in medical research. It then looks at each subsequent five-year epoch, with a focus on 

papers appearing in Statistics in Medicine, putting these in the context of major developments in Bayesian 
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thinking and computation with reference to important books, landmark meetings and seminal papers. It charts 

the growth of Bayesian statistics as it is applied to medicine and makes predictions for the future.  

 

Ethical considerations suggest that randomized trials are more suitable than uncontrolled experimentation in 

protecting the interests of patients in the cohorts.Randomized clinical trials remain the most reliable method for 

evaluating the efficacy of therapies. (Thall(1998), Bailey(2007)). 

 

Whitehead et.al(1998) considers the Phase I clinical trials and  describes a systematic approach to their 

implementation in dealing with the dose-escalation studies in which two responses are observed on each subject. 

One of these was referred to as a Dose limiting Event[DLE] and the other was a DO [Desirable Outcome] measures 

of Therapeutic benefit. 

 

Bailey(2007) illustrates  that a small groups of subjects, known as "cohorts", where the treatment of one cohort 

being completed and assessed before the next cohort begins. Within each cohort,there are a small number of 

treatment periods,and each subject is administered a treatment in each period.  

 

To the best of our knowledge the study on the Bayesian procedures to find the MTD exists, however the Bayesian 

models for dose escalation studies with the cohort effects are not considered in the literature in the setting of 

Phase I clinical trials, 

 

Cohort Effects are uncorrelated random variables with a common variance. Cohort effects study modelling is 

important as it  includes the reactions within the treatment periods and it is done by evaluating the posterior 

modal estimates. 

 

In the paper , Section  2 gives a general illustration of the parameters considered in the clinical trial. It also shows 

the Models that are considered for the extension study along with the results of the simulation runs. Section 3, 

gives the conclusions of the trial study. 

 

2. Methodology: 

 In this paper we have considered cohort effects in the model while escalating MTD.  

Zhou(2006) considered that the Regression Models for the dose limiting event and desirable event  outcomes. 

The subjects in this trial are denoted as (Si), i = 1 … n  and the dosing periods are denoted as (Pij), j = 1 … k. The 

dose administered to Si in Pj is denoted as dij for those combinations of i and j for which an active dose is 

administered. Suppose that at the start of the study a number of doses d1 < ⋯ dm  are available for 

administration to successive cohorts of subjects and that we can express our opinions about the likely value of the 
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MTD by specifying a prior distribution which corresponds to the initial estimate of the MTD.  

 

2.1.Bayesian Models considered for the study: 

We develop 2 models to model the cohort effects in this paper. First model is the dose limiting event model and 

the second model developed considers the Desirable Outcome Event. 

 

Dose Limiting Event Model 

Model Specification:  

The basic set up is to consider the 3 parameter logistic regression model with the predictor variables 

(Independent variables) and the response variables ( outcome variables). 

 

pDLE =  
exp (β1 + β2logdij + β3 )

1 +  exp (β1 + β2logdij + β3 )
           … (1) 

 

where, 

pdle denotes the probability of dose limiting event. 

dijrepresents the doses considered in the clinical trial study. 

β1, β2,β3 represents the parameters in the study and they are assumed to follow the normal priors. 

 

Bayesian approach is implemented based on the assumption that the effect parameters change gradually. A 

Bayesian setting with priors is introduced for the selection of the optimal model. 

We then go on to develop a Bayesian approach for projecting the cohort parameters, which allows fully for 

uncertainty in the recent parameters due to the lack of information in the dose escalated data. 

 

2.2    Bayesian Hierarchical setting and estimation of the model parameters 

To derive the posterior distribution, the traditional Bayes theorem together 

with the application of the product of the normal prior probability and thelogistic likelihood function for the 

observed data.  

 

Let  β3~ cij 

β1, β2, β3 follow the Normal priors.  

 

The Bayesian prior is given by the following equation 
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The Likelihood is given by  

P(β1, β2, β3 )~ ∏
e(β1+β2logdij+β3)

1 + e(β1+β2logdij+β3 )

n
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          … (3) 

 

 

The posterior is given by  
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The posterior distrbution involves the absolute mean and the optimisation of the loss function. Explicitly we 

cannot integrate out the posterior parameters hence the Gibbs sampler is considered. 

 

Bayesian Markov chain Monte Carlo methods considers modelling of the unknown parameters from their 

conditional (posterior) distribution given those stochastic nodes that have been observed in the clinical trial. The 

basic idea behind the Gibbs sampler is to generate posterior distribution of the unknown quantities. Empirical 

summary statistics formed from these samples and used to draw inferences about their true values. 

The current Gibbs sampler algorithm is based on a symmetric normal proposal distribution, whose standard 

deviation is tuned over the first 20000 iterations in order to get an acceptance rate of between 20% and 40%. All 

summary statistics for the model will ignore information from this adapting phase. 

 

Hence the 20 % risk of toxicity level is determined from the threshold of the convergence pattern of the DLE burn 

in phase of iterations. 

 

The Hastings Algorithm leads to the Gibbs sampler teachnique with the transition probability function such as the 

event of toxicity in our case. 

The advantage is to eliminate dependency on the initial values which considers the missing data values as well in 

the burn in phase. 

 

2.3     Model comparison: 

Within a simple Bayesian framework simultaneous parameter estimation and model comparison can be 

performed. 
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Zhou’s model (2006) considered the 2 parameter Bayesian regression model settings for efficacy and toxicity 

levels. The accuracy measures for the toxicity settings is measured by the cohort variable effect which happens in 

a clinical trial. 

 

Hence we propose the model for setting the probability of our proposed dose limiting event modeland desirable 

outcome model with cohort effects.  The dose limiting event model to get probability of toxicity is using the 

following method 

 

logit(p) is denoted as β1 + β2logdij + β3  

which is obtained by  

ln[p/(1-p)] = β1 + β2logdij + β3  

or 

p/(1-p) = eβ1+β2logdij+β3  

(Where: 

“ln” is the natural logarithm, logexp, where e=2.71828 

“p” is the probability that Y for cases equals 1, p (Y=1) 

“1-p” is the probability that Y for cases equals 0, 

“p/(1-p)” is the odds 

ln[p/1-p] is the log odds, or “logit”) 

 

Simplifying the above equations we get,  

 

p = eβ1+β2logdij+β3 (1- p)  

 

p (1+ eβ1+β2logdij+β3 ) = eβ1+β2logdij+β3  

 

Hence the equation for the probability of toxicity is obtained as 

pDLE =  
exp (β1 + β2logdij + β3 )

1 +  exp (β1 + β2logdij + β3 )
          … (5) 

 

 

Cohort effects follow the Normal priors with the mean = 0 and precision follows a uniform prior. 
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3. Experimental Results for the probability of toxicity 

The simulation results that were obtained by generating the toxicity responses using the logistic model is 

observed in Table 1, Table 2, andTable 3. 

Probability of toxicity is around 0.2 for the cohort with less adverse events. 

Analysis of the Cohort effects in the DLE model is obtained in the simulation process. 

 

3.1 Desirable Outcome Model 

The desirable outcome measure is modelled using the parameters of the cohort effects in the statistical model. 

The analysis leads to the separate assessments of cohort, treatment and the doses available in the data. The 

assessment of these three factors can possibly yield insights into the optimisation of the model. 

 

Linear Mixed effects regression model  

 

yij =  β0 + β1 log dij + β3 log dij           … (6) 

 

Where, 

yijis the desirable Outcome response which is modelled along with the doses in the study which is 

denoted as dij. 

 

β1, β2 ,β3 represents the parameters in the study and they are assumed to follow the normal priors. 

 

Bayesian Hierarchical setting of the model parameters involve the desirable outcome response with a Normal 

prior. The estimates of  β0 and β1 have a normal prior distribution. The precision estimate takes a uniform prior. 

 

In this section, we give an option Bayesian structure for the dose- response evaluation to the interim analysis of 

finding the way the desirable outcomes work with the cohort effect parameters included in the model for the 

study. The Bayesian system additionally considers a more careful surmising, utilizing all accessible data, which is 

ideal when settling on choices under uncertainty.We used MCMC via WinBUGS (Spiegelhalter, 2002) to simulate 

samples from posterior distributions of relevant parameters. 

 

Initial values for the cohort effects are chosen as 2.6, β0 = 3.2 ,β1 = 2 after running the simulation trial runs. 

 

InFigure 1 and Table 4 for the Dose Response curve shows the prediction values and data convergence. 

 

The convergence pattern of the prediction values with the data in the Bayesian setting is observed when the 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3773943/#R23
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cohort parameters are fitted to the model with the dose combinations. In the comparitive study of Zhou (2006) 

we find that our Dose response curve estimation gives a more accurate response to the study of the escalation 

procedure. 

 

The probability of toxicity is found to be 0.2 which gives an exact approximation for the 20 % risk of toxicity level 

that we want to achieve when implementing the model. The treatment and cohort effects are showing more 

convergence for the cohorts with the doses that causes more adverse events. 

Extension of Zhou ( 2006 ) model was consistent when verified using the Bayesian hierarchical model settings. 

Using dose-limiting and low-level toxicity counts, which are obtained from data already collected, it is a promising 

way to improve the efficiency in finding the true maximum tolerated dose in phase I trials using the simulation 

run in hierarchical models. 

 

4.  Results and Conclusions 

 The dose limiting event model evaluates the posterior modal estimates of the parameters β1 and β2which is 

given by β̃1 = - 3.4 and β̃2= 0.36.  

 

In the simulation study, we evaluate how often our models select the true maximum tolerated dose, and we 

compare our models with the Bayesian models optimal fit.  

 

Simulation results based on 20000 iterations gives the estimator accuracy of the cohort effects and the 

precision for the dose-response curves. True parameter value of mean and standard deviation is shown in the 

table. 

 

Across a variety of simulation settings, we find that our models compare well against the Logistic regression 

models in terms of selecting the true optimal dose. In particular, our models is to predict the probability of the 

dose-limiting toxicity levels and then check with the safety constraint scenario. 

 

The posterior modal estimates are consistent with the paper of Zhou (2006) and the maximum safety constraint 

for a p(dle) is 0.2. 

Here cohort 5 and cohort 6 has the safety constraints more than 0.2 and so the doses have to be de-escalated to 

minimize the risk in the trial. 

 

 Discussions on the Fitted Cohort Parameters: 

We deal with this by using the general dose escalation procedure to sequentially select the doses for the study 

and then adding a set of cohort parameters to the model.  
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The cohort parameters should be stationary, in the sense that the variability of the cohort parameters around the 

central trend should not change with the dosing periods.  

 

The outputs for the prior distribution gives the overall cohort effect value to be 0.6904 which is observed from 

the trace density plots. 

So, the probability of toxicity is calculated for each of the cohorts individually and the aim is to check if the toxicity 

is more for the higher doses in the Bayesian hierarchical setting. The probability of toxicity increases with the 

doses.  

The feasible values often lie outside the 95% prediction interval for the ultimate cohort parameters. The cohort 

parameters are checked with respect to the interim data in the trial. So, our cohort effect parameters clearly 

show the convergence of the responses for the prediction model. 

Depending on how important the length of the trial is to the clinician and the institution, we recommend using 

cohort effects per dose level to avoid seeing simultaneous toxic events when a group of patients are treated at 

the same dose level as was the case in a recent phase I trial of the drug TGN1412. [Senn[2007]]. In that trial, six 

volunteers were given what was believed to be a safe dose of an anti-inflammatory drug TGN1412. Shortly after, 

all 6 were admitted into intensive care due to severe reactions including swelling of the head and neck. The 

cohort effects considered in this paper extends to the TGN1412 Bayesian setting of priors comparing the 

frequentist model approach. 
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Table 1 : 

6 cohorts with 10 subjects each                       

β1 =  −2, β2 = 0.2  

 

NODE MEAN SD MSE 

beta[1] -2.33 1.417 0.07674 

beta[2] 0.3013 0.2905 0.01586 

pdle[1] 0.196 0.1033 0.005014 

pdle[2] 0.2614 0.06909 0.001186 

pdle[3] 0.3636 0.1042 0.003571 

pdle[4] 0.2614 0.06909 0.001186 

pdle[5] 0.2904 0.07204 8.14E-04 

pdle[6] 0.3299 0.09237 0.002544 

Cohort effect 0.65152 0.4069 0.008624 

 

Table 2 : 

6 cohorts with 30 subjects each 

β1 =  −3, β2 = 0.2 
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Table 3:  

6 cohorts with 60 subjects each 

β1 =  −4, β2 = 0.2 

 

 NODE  MEAN SD MSE 

beta[1] -4.034 1.2631 0.056932 

beta[2] 0.2119 0.25625 0.054531 

pdle[1] 0.03518 0.0208 0.055642 

pdle[2] 0.24327 0.01318 0.056753 

pdle[3] 0.26091 0.02304 0.057482 

pdle[4] 0.274327 0.01318 0.052390 

pdle[5] 0.284957 0.01402 0.057892 

pdle[6] 0.29468 0.01899 0.056730 

Cohort effect (𝛃𝟑 ) 0. 6582 0.3983 0.058797 

 

Table 4: 

 MEAN SD MSE 

cohort_effect(β3 ) 3.34 1.880 0.067 

β0 2.990 0.97 0.075 

β1 1.23 1.034 0.053 

 

 

NODE MEAN SD MSE 

beta[1] -3.33 1.269 0.05067 

beta [2] 0.2222 0.2565 0.04597 

pdle[1] 0.06954 0.03977 0.05055 

pdle[2] 0.21001 0.02547 0.05632 

pdle[3] 0.2214 0.04344 0.04246 

pdle[4] 0.28661 0.02547 0.00623 

pdle[5] 0.29557 0.02687 0.05569 

pdle[6] 0.2992 0.0366 0.05091 

Cohort effect 0.63421 0.4031 0.05071 
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Figure 1 

 


