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Abstract: A large fraction of Internet traffic is now driven by requests from mobile devices with relatively small screens and often stringent 

bandwidth requirements. Due to these factors, it has become the norm for modern graphics-heavy websites to transmit low-resolution, low-

byte count image previews (thumbnails) as part of the initial page load process to improve apparent page responsiveness. Increasing 

thumbnail compression beyond the capabilities of existing codecs is therefore a current research focus, as any byte savings will significantly 

enhance the experience of mobile device users. Toward this end, a general framework is proposed for image compression and a novel 

architecture based on convolutional and de-convolutional LSTM neural networks. This paper presents a set of full-resolution lossy image 

compression methods based on neural networks. Each of the architectures described can provide variable compression rates during 

deployment without requiring retraining of the network: each network need only be trained once. Proposed work is compared to previous 

work, showing improvements of 4.3%–8.8% AUC (area under the rate-distortion curve), depending on the perceptual metric used.  
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I. Introduction: 

Image compression is necessary so as to enable saving large amounts of images in a limited storage area. 

Most images captured today are for human consumption. Human vision is sensitive towards some features of an 

image. e.g. Low-frequency components of an image are easily noticed while high-frequency components are  

not. This fact is used in lossy image compression algorithms. Hence, lossy image compression algorithms focus on 

the removal of such features from the image. In this paper a new lossy image compression framework is proposed 

which could provide better image compression ratio while maintaining the quality of the images. 

Many techniques such as Run-Length Encoding (RLE), Discrete Cosine Transform (DCT), etc. are used 

traditionally for image compression. These deterministic image compression algorithms rely mainly on image 

filters, discrete transformations and quantization. Because of Moore’s law, handheld devices and personal 

computers now have much higher processing power than they had at any time in the past. This has allowed 

the development of modern image compression algorithms. Many image compression frameworks have now 

been proposed, based on deep neural networks. Parts and ideas from several of those frameworks are used to 

develop a new deep neural network architecture which is an improvement upon existing architectures in terms of 

efficiency and image quality metrics such as SSIM, PSNR.  
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II. Related work: 

Jiang, et al. considered an end to end image compression network in which fully convolutional neural network based 

encoder is used for image compression [1]. Proposed architecture closely follows this model. Hence on several 

instances, this architecture have been used as our baseline model and compared our performance with this 

architecture. In this architecture, a smaller image is constructed by encoder. This image is a smaller replica of the 

original image. The decoder, in this instance called re-constructor, is designed to generate an original image 

back from its smaller replica. Average PSNR and SSIM metrics obtained were 28 and 0.56 respectively after 

implementation. We achieved better results than this model. Another convolutional neural network 

based architecture proposed by Cavigelli, efficient in suppressing the artifacts which are introduced during image 

compression process. This architecture makes efficient use of several skip connections to train the model. 

Henceforth skip connections are used to train our model faster. Space separable operations such as pointwise and 

depth wise operations are used at some levels of our neural network to reduce the training as well as inference 

time required to train our model. 

We have also designed a loss function such a way that image generated from compression module  has a 

very low variance in pixel values. This limits the pixel values the resultant compresses image can have. The 

arithmetic encoder is used to process this compressed image. Since the compressed image now has a very small 

number of distinct values, an arithmetic encoder can use lossless data compression algorithms such as entropy 

coding or RLE to further compress the results obtained from compression module. 

Hyper-parameter optimization was performed on this network to calculate hyper- parameters such as number 

or layers, learning rate, coefficients for loss function etc. We used hyper-band scheduler for this purpose. We could 

improve our results using values obtained hyper-parameter search. The recently developed algorithms like WebP 

and High-Efficiency Image File Format (HEIF) use more complex encoding structures. Even though these 

compression techniques require more computation power than the traditional algorithms like JPEG, but resulted 

in much smaller file size while maintaining a similar quality of an image. 

Before the advent of Deep Neural Networks, techniques such as Run-length encoding, Entropy encoding, 

Differential Pulse-Code Modulation (DPCM) were used for image compression. In run-length encoding series of bits 

of 0s and 1s are replaced by a bit symbol followed by a count of the number of bits. Entropy encoding 

method on the other hand works, on a higher level of image representation. In this technique, quantized pixel 

values are replaced by symbols. Length of these symbols is determined on the basis of frequency of 

occurrence. Huffman Coding, Arithmetic Coding, and Range Coding techniques are some examples of entropy 

encoding techniques. Run-length encoding and Entropy encoding techniques are lossless data compression 

techniques. Data is lost when quantization results in the lower granularity of values. However, it is necessary to 

convert analog values to its corresponding digital values. Differential Pulse-Code Modulation (DPCM) is another 

technique used to convert an analog signal into a digital signal. In this technique, the difference between sampled 
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values from the analog signal and predicted values is quantized and encoded. Since pixel values are predicted 

based on previous values, the compression factor of DPCM is higher than quantization techniques. 

An Image in WebP format is represented by 32 bit format. In this format, alpha channel is added along 

with ’R’, ’G’, ’B’ values which represent the opacity value. Lossy WebP architecture uses predictive encoding 

technique in which, the value of a pixel is predicted using the value of neighboring pixels. Lossless WebP 

compression technique uses a variety of lossless transformation techniques such as color de-correlation transform, 

Subtract Green Transform and color cache encoding in order to provide better lossless performance than 

earlier techniques. HEIF is a video and single image compression format in which images are stored in the form of 

thumbnails in several containers and the final image is built using those representations. HEIF format supports 

16-bit color as opposed to an 8-bit color used by JPEG. HEIF format supports block sizes of 8 × 8 to 16 × 16 

pixels. Pixel value in each block is predicted using the data in another block. This format uses Context-Adaptive 

Binary Arithmetic 

Recurrent Neural Networks (RNNs) are typically used for sequential time series data predictions. RNNs have 

been used for image compression in an architecture proposed by Toderici, et al [8]. This architecture was 

developed small network bandwidth for handheld devices. In this architecture, the output image is refined and 

improved successively as more data is obtained from the network. Even though this network performs better 

compared Vanilla CNN based approaches, every iteration of a network requires a minimum of eleven layers of 

RNN convolutional layers and hence, it can be a more complicated model to train. This model is more useful in the 

instances where compressed image data is received while image is being constructed. 

 

III. Proposed Methodology: 

This paper discusses about a model that is interluding with one of RNN’s network that is LSTM and how the output 

will be reproduced depending on the functional features of each block of the network. Our compression networks 

are comprised of an encoding network ‘E’, a binarizer ‘B’ and a decoding network ‘D’, where D and E contain 

recurrent network components. The input images are first encoded, and then transformed into binary codes that can 

be stored or transmitted to the decoder. The decoder network creates an estimate of the original input image based 

on the received binary code. This procedure is repeated with the residual error, the difference between the original 

image and the reconstruction from the decoder. All the details mentioned will be explored. 

Figure.1 shows the architecture of a single iteration of our model. While the network weights are shared 

between iterations, the states in the recurrent components are propagated to the next iteration. Therefore residuals 

are encoded and decoded in different contexts in different iterations. Note that the binarizer B is stateless in our 

system. 

We can compactly represent a single iteration of our networks as follows: 
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A. Block diagram: 
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Figure.1 Block diagram 

Where, Dt and Et represent the decoder and encoder with their states at iteration t respectively, bt is the progressive 

binary representation; xˆt is the progressive reconstruction of the original image x with γ = 0 for “one-shot” 

reconstruction or 1 for additive reconstruction and rt is the residual between x and the reconstruction xˆt. In every 

iteration, B will produce a binarized bit stream bt{1, 1}m; where m is the number of bits produced after every 

iteration. 

After k iterations, the network produces m, k bits in total. Since our models are fully convolutional, m is a linear 

function of input size. For image patches of 768x512, m = 128. The recurrent units used to create the encoder and 

decoder, include two convolutional kernels: 

i. The input vector which comes into the unit from the previous layer. 

ii. The state vector which provides the recurrent nature of the unit. 
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Convolution on the state vector and its kernel is referred to as the “hidden convolution” and the “hidden kernel”. All 

convolutional kernels allow full mixing across depth. For example, the unit D-RNN#3 has 256 convolutional kernels 

that operate on the input vector, each with 3x3 spatial extent and full input-depth extent (128 in this example, since 

the depth of D-RNN#2 is reduced by a factor of four as it goes the “Depth-to-Space” unit). The spatial extents of the 

hidden kernels are all 1x1, except for in units D-RNN#3 and D-RNN#4 where the hidden kernels are 3x3. The larger 

hidden kernels consistently resulted in improved compression curves compared to the 1×1 hidden kernels. 

        During training, a L1 loss is calculated on the weighted residuals generated at each iteration, so our total loss for 

the network is: 

 

 

Combination of recurrent unit variants and reconstruction frameworks for our compression systems are explored 

and compared these compression results to the results from the de-convolutional network. 

 

B. Image Quality Metrics: 

Image quality metrics are useful for us to measure how well is an architecture has performed. These can also be used 

to define loss in neural networks. Here, we will review some reference image quality metrics. 

Mean Square Error (MSE) : MSE calculates the addition of squared differences between pixel values of two images. 

Here, M and N is a size of image1 and image2 respectively. I(x,y) is a pixel value at position x,y. This is the simplest 

image quality metric to understand. However, This metric is not always a good metric to access image compression 

quality since it does not take into account the range of variations in pixel values in an image and high, low-frequency 

components in an image. These factors, however, affect human perception towards quality.                       

 

Peak Signal to Noise Ratio (PSNR):  PSNR is a measure of peak error between two images. This method is used to 

calculate the quality of compression method where higher PSNR value represents better quality of compression of an 

image. 

 

Where R represents maximum fluctuation in input image pixel values 

Structural Similarity Index (SSIM): SSIM calculates quality degradation in an image due to image processing tasks 

such as compression. SSIM is considered a better metric to access degradation of images because it takes into 

account visible structures of an image. SSIM is calculated using a combination of variance and covariance terms 
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between two images. 

Dataset augmentation: Data augmentation is used introduced to regularization in deep neural networks. 

Augmentation in images increases the effective dataset size and hence helps the neural network learn important 

features about images. We applied data augmentation techniques such as random cropping, random scaling, random 

flips and rotation of images and random changes in colors of an image. 

 

C. Network Design 

Our proposed architecture consists of four parts - Image Compression Module (ICM), Arithmetic Encoder, Arithmetic 

Decoder and Image Reconstruction Module (IRM).  

 

Arithmetic Encoder and Decoder  

Arithmetic encoder and decoder are made up of python implementation of Huffman coding. In Huffman coding, 0-

255 values of pixels are treated as separate symbols, the frequency table is calculated, and this symbol is replaced by 

a sequence of bits. The number of bits used to represent a given symbol is inversely proportional to the frequency of 

that symbol. Huffman coding was implemented using reference arithmetic coding library in python. Since original 

data can be completely retrieved in the decoder part, it is a lossless compression algorithm and its introduction or 

removal does not affect other neural network-based modules. For the purpose of neural network training, we did 

not use an arithmetic coder or decoder so as to avoid unnecessary computational overhead. 

 

 Image compression module (ICM)  

The image compression module consists of a series of CNN layers. These CNN layers are used to learn features of the 

images which can be useful for further image reconstruction tasks. Series of convolutional neural networks identify 

latent features in images and helps to develop series of feature maps which could hold information useful for 

identifying critical components in an image. These components, includes overall structure of an image as well as 

some salient features such as edges and corners which cannot be regenerated by reconstruction layer unless they 

are provided as an input. Thus, this module acts as a filter through which only few critical components are passed to 

an intermediate image. We have performed hyper-parameter optimization on this component where we tried three, 

five and ten layers. However, performance of overall network did not improve with more layers in this module. 

Hence, we have used a three layer CNN module as shown in Figure.2 
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Figure. 2 Image Compression Module 

 

   Image reconstruction module (IRM)  

Reconstruction module is tasked at regenerating an image such that it is very similar to the original image. The 

reconstruction module has two responsibilities - Resize an image to the original size and improve the quality of the 

resized image. Since this module is tasked with regeneration of an image from a minimal information passed on by 

compression module, this module requires more layers to hold information on how to reconstruct an image. This 

information is held in feature maps of convolutional layers. The first few layers are responsible in reconstruction of 

basic shapes such as line, points, corners etc. while further layers adds more information about the image such as 

facial expressions. The size of kernel used in this network is maintained at 3 × 3 since all these features are local to a 

region and are less likely to have any impact on other parts of an image. 

To resize the compressed image to its original size SRGAN is used. This network returns the image of size four 

times bigger than the actual image. This image can be scaled down to the desired size using the interpolation 

technique before it is fed to the reconstruction module. SRGAN is known to generate an image with much better 

quality as compared to simple interpolation techniques. While training this network, interpolation technique is for 

upscaling instead of GAN due to the overhead GAN might have caused during the training phase. Moreover, this 

allowed us to use bad quality images to train the network for image enhancement. Using a bicubic interpolation 

instead of SRGAN alleviated some need for data augmentation to training reconstruction network.  

SRGAN was trained separately in its original proposed shape on the ImageNet dataset. The IRM consists of five blocks 

each containing one convolutional layer and an optional batch normalization or RELU layer. 

 

Figure. 3 Image Reconstruction Module 

IV. Results 

Training Output: 

Our neural network is trained on STL10, CIFAR10, COCO and CLIC image datasets for varying number of epochs and 

network sizes, got the best results out of 50 epochs of COCO dataset. It required more than 110 hours of training on 

Google Cloud instance with Nvidia Tesla P 100 GPU. Image size of 200x200 is used for this training. SRGAN and 

arithmetic encoder and decoders were not added to the network during training time. 

 

Figure.4 Training start 
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Figure.5 

Training end 

 

V. Conclusion 

The proposed framework is a mix of SRGAN and end-to-end image compression network. In this architecture, the 

bicubic interpolation layer is replaced with SRGAN and have introduced some skip connections as proposed in image 

compression artifact suppression network to improve the performance. The SSIM and PSNR metrics obtained with 

our new framework in some cases beats recently proposed deep neural networks. The time required for the 

execution of deep learning framework is largely proportional to the number of neural network layers. Our networks 

only need to be trained once (not per-image), regardless of input image dimensions and the desired compression 
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rate. On a large-scale benchmark of 32x32 thumbnails, our LSTM based approaches provide better visual quality than 

(header less) JPEG, JPEG2000 and WebP, with a storage size that is reduced by 10% or  more. 
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