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Abstract 

This paper aims to conduct automatic non-predictive learning by dividing datasets into several subsets on their preju-

diced measurements. To notarize paramount recitals in this direction, the work presented in this paper is captivated by con-

ducting automatic evolutionary clustering with Teaching-Learning-Based Optimization (TLBO) to organize the collection of pat-

terns into clusters based on similarity and by upholding minimum intra-cluster and maximum inter-cluster distances. This work 

has set a goal to determine the number of clusters automatically, enriching absolute positions of clusters with optimal size, 

shape, low computational time and minimum error rate. The cogitative content of this work is to investigate possibilities for the 

improvement in classical clustering algorithms with TLBO and evolutionary automated clustering cognitions. This article opti-

mizes multiple objective functions simultaneously and evaluates clustering quality regarding the goodness-of-fit of the resulting 

clusters against the existing methods. This treatise advances a new point of view results by testing the performance of TLBO 

and its advancements with automatic clustering techniques across real-time and micro-array datasets. 

Keywords: Automatic Clustering, Evolutionary Algorithms, Cluster Validity Indices, Meta-heuristics, TLBO. 

1. Introduction 

The inclination towards building an evolutionary automatic clustering framework by unifying a 

meta-heuristic TLBO [15-22, 9,12] with automatic clustering procedures is to obtain intuitive interpreta-

tion and automatic analysis of datasets embedded in a high dimensional space. The following challenges 

have motivated to use self-adaptive clustering [1, 2] over a divaricated variety of datasets in this work. 

• The classical partitioning techniques are single-objective optimizers and perform a local search rather 

than a global search. 

• Classical partitioning techniques performance is highly dependent on initialization of initial seed value 

and incorporates ergonomic knowledge of human experts to define a pattern referring to the number of 

classes and scale the features available to the clustering algorithm.  

• The technique confines its applicability with spherical clusters of almost-equal volumes.  
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• An appropriate pattern proximity measure using pair-wise similarity is used to quantify the degree of 

interestingness within the group and to use it as a single objective function 

These cluster analysis challenges are attempted and explored systematically and structurally in 

the form of cluster properties [10]. This approach is exclusively practiced in this work with a set of three 

algorithms by establishing an automatic evolutionary framework to attain impending outcomes. The set 

of three algorithms taken up in this paper are AutoTLBO [8, 11], AutoSpssTLBO [7], and AutoITLBO [6]. 

The comparing three algorithms are developed by the same authors in earlier works. These set of algo-

rithms can automatically find an optimal number of the cluster in any dataset without any human inter-

vention, relatively with low % of error rate and less CPU time. The adopted cluster validity indices (CVIs) 

[3, 5, 14, 23] in this work can validate a reasonably good index function value with its high mathematical 

and statistical function. An elegant and versatile impression from the user thought process after having 

life experiences over real-time, and micro-array datasets can discover automatically statistically signifi-

cant and hidden patterns in datasets for meaningful groupings. 

2. Algorithms for Comparative Study 

The chief strategy in this work is compelled under three distinct algorithms to foster this broad 

agenda. The esteemed sets of three automatic clustering algorithms are base lined with the TLBO, a 

most recently emerged algorithm in multi-objective evolutionary methods [1]. This high trajectory is 

reformed with profound variants elements of TLBO as basic, elitist and improved TLBO [12]. All the three 

algorithms used in the present article are the previous works of the first author of this paper. 

The first algorithm (AutoTLBO) [8, 11] presented in this work brings a likely change in conven-

tional clustering by using a randomize function to initialize the centroid with k-value and thereby coa-

lesce the teaching and learning phases of TLBO and elitism into the approach. This approach attempts to 

solve multiple objective functions such as distance functions, CVIs in a single run.  The impact of this 

excogitation tested over real-time and micro-array datasets [4], and thereby the algorithm strengthen-

ing is compared with its potential rivals in automatic clustering. The results presented under these algo-

rithms earns a favorable verdict and thereby profoundly confers accountable and superior quality self-

activating clusters without human intervention.   

The second algorithm (AutoSpssTLBO) [7] presented in this work replaces the randomize func-

tion to initialize the centroid in the initialization phase of AutoTLBO with Single Pass Seed Selection 

(SPSS) [13], an initial seed selection strategic algorithm and amalgamates the teaching and learning 

phases of TLBO in its consecutive steps. To maintain transparency and consistency amongst the algo-

rithms the aforementioned multiple objectives and to compare automatic clustering were relented 

again. This loom confirms creditable automatic clusters and expedient favorable solution than its chal-

lenger algorithms.  

The third algorithm (AutoITLBO) [6] presented in this work upholds the same initialization strat-

egy adopted in the second algorithms and is vested with Improved TLBO. This algorithm replicates the 

same inclusions that were presumed to bestow visible clustering results. This decisive step is highlighted 

to factorize an automatic clustering framework to lodge useful results to reckon self-regulating optimal 
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natural partitions over datasets from any domain.  

Apparently, the study in this paper spotlights enormous potential algorithms that exhibit im-

pended and remarkable outcomes when advocated over real-life and micro-array datasets. Subsequent-

ly, this work commissions an influencing opinion that these sets of three automatic clustering algorithms 

may be used to endorse any clustering problems in scientific or engineering applications to cluster data 

objects and enormously gain noteworthy domino effect automatically.    

Table 1: Mean Values of Automatic Algorithms after Completion of 50 Independent Runs over Real-

Time Datasets. 

Datasets 

(row*col, 

k) 

Algorithm 

No. 

of 

Au-

to 

Clu

ster

s 

ARI RI SIL HI CS DB 

% of 

Er-

ror 

Rat

e 

CPU 

Time 

(Sec) 

Iris  

(150*4, 3) 

AutoTLBO 
3.0

2 

0.92

32 

0.97

37 

0.076

3 

0.947

3 

0.719

4 

0.517

8 

6.00

0 
27.89 

AutoSpssTLBO 
3.0

1 

0.895

7 

0.97

37 

0.086

7 

1.02

07 

0.89

66 

0.623

0 
8.17 

167.3

4 

AutoITLBO 
3.0

0 

0.991

4 

0.921

0 

0.94

10 

0.091

2 

0.894

5 

0.74

15 

10.2

2 

20.1

4 

Wine 

(178*13, 

3) 

AutoTLBO 
3.5

0 

0.693

2 

0.684

2 

0.315

8 

0.568

3 

0.395

5 

0.769

3 

51.2

2 
37.16 

AutoSpssTLBO 
3.1

0 

0.69

57 

0.705

2 

0.394

8 

0.89

57 

0.71

05 

0.755

0 

0.36

0 

234.9

6 

AutoITLBO 
3.0

1 

0.841

2 

0.77

81 

0.64

17 

0.541

2 

0.603

8 

0.89

74 

41.9

8 

109.4

7 

Glass 

(214*9, 6) 

AutoTLBO 
5.8

6 

0.655

3 

0.705

3 

0.294

7 
0.410 

0.299

1 

1.300

9 

47.2

0 

41.6

7 

AutoSpssTLBO 
5.9

7 

0.691

2 

0.794

7 

0.295

3 

0.69

58 

0.489

5 

1.266

7 

16.2

9 

250.0

3 

AutoITLBO 
5.9

5 

0.78

94 

0.91

00 

0.60

14 

0.645

8 

0.54

81 

.998

0 

39.2

2 

104.2

2 
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Table 2: Centroid table of iris Dataset Attributes with a Proposed set of Algorithms. 

Attributes 

of iris da-

taset 

AutoTLBO AutoSpssTLBO AutoITLBO 

Clus-

ter 0 

Clus-

ter 1 

Clus-

ter 2 

Clus-

ter 0 

Clus-

ter 1 

Clus-

ter 2 

Clus-

ter 0 

Clus-

ter 1 

Clus-

ter 2 

Sapel 

length 
5.90 6.85 5.00 5.93 5.00 6.58 5.9 5.0 6.5 

Sapel 

width 
2.74 3.07 3.41 2.77 3.41 2.97 2.8 3.4 3.0 

Patel 

length 
4.39 5.74 1.46 4.26 1.46 5.52 4.35 1.5 5.55 

Patel 

width 
1.43 2.07 0.24 1.32 0.24 2.02 1.33 0.2 2.0 

3. Empirical Approach to Identify Peak Performances 

This section consolidates the results presented in research articles [8, 11], [7] and [6]. These ar-

ticles render a set of three algorithms copiously devoted to the appendage of automatic clustering 

methods and are names as AutoTLBO, AutoSpssTLBO, and AutoITLBO. The key aspects, salient features, 

and results of the proposed methodologies are well elaborated in the present article. It is proven in re-

search articles [8, 11], [7] and [6] that these original algorithms efficiently and efficiently produced high-

quality cluster when targeted over real-time and micro-array datasets [4]. Measuring performance of 

the algorithm is a correlated factor affected by computing speed, memory usage, the operating system 

installed and software opted to implement the algorithm. The empirical approach in this study precisely 

assists the user to gauge algorithm in a statistically significant way, with self-benchmarking practices 

towards the sensitivity of problem, parametric settings, and other performance metrics. A considerable 

factor that affects the relative performance of the algorithm is in the evolutionary approach since these 

algorithms return a faintly unique solution each time they are run.  The second issue in consideration is 

as these set of algorithm tenders in a heuristic approach; they may result in superior quality results in a 

particular performance measure or vice versa. 
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3.1 Interpreting Results on Real-time Datasets  

 

Fig. 1.Centroid values of AutoTLBO over iris Dataset. 

In this experiment, the results appeared in research articles [8, 11], [7] and [6] over real-time datasets are 

consolidated, and a conceivable assessment of the intended methods is conducted. Table 1 represents the values 

occurred in the three algorithms. The best results are displayed in boldface.  

In this comparing, AutoSpssTLBO exhibits peak performance in gaining an optimal number of automatic 

cluster, and AutoTLBO produces superior quality results in respect to the minimum error rate and CPU time. Four 

out of the six CVIs tenders optimal values nearer to 1. The impact of the third algorithms is relatively minimal when 

compared to its contenders. In concluding remarks from this section based on the outcomes of the proposed algo-

rithm, is AutoTLBO and AutoSpssTLBO exhibit better peak performance over real-time datasets. Table 2 displays 

the centroid table of iris dataset comprising the set of three algorithms and the values are recorded after 50 inde-

pendent runs. The other dimension of experimental study is extended towards a statistical approach to justify the 

performance of the algorithm. Fig. 1, 2 and 3 exhibits the same centroid values graphically of AutoTLBO, Au-

toSpssTLBO and AutoITLBO methods respectively. The observations from Table 2 AutoSpssTLBO gains relatively 

better benefits than the other two contending algorithms. 
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Fig. 2.Centroid values of AutoSpssTLBO over iris Dataset. 

 

Fig. 3. Centroid values of AutoITLBO over iris dataset. 

Table 3 describes the outcomes of stratified statistical evaluation methods adopted in this ap-

proach to identify the peak performers in real-time datasets, which are less influenced by errors while 

building the model. The 0.035 error value gained in mean absolute error (MAE) of AutoSpssTLBO, is rela-

tively less when compared to the other two contenders. Eventually, the outcome of AutoSpssTLBO at 
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root mean square (RMS) with an error value of 0.47, establishes a little relationship between MAE and 

RMS error while estimating the difference between the actual and predicted residuals. These implica-

tions thereby signal low error rate, which can be treated as a decisive factor towards estimation of Au-

toSpssTLBO accuracy. The errors root relative square error (RRSE) and relative absolute error (RAE) is 

expressed in a ratio of % in error. These metrics are together used to estimate the variance of error. 

AutoTLBO and AutoSpssTLBO induce a more significant variation in errors whereas the errors in AutoI-

TLBO are of the same magnitude. The SSE is less in AutoTLBO when comparing to their algorithm, alt-

hough AutoSpssTLBO exhibits low error rate in MAE, RMSE, RAE, and RRSE. The harmonic average of 

precision and recall, precision and recall scores accurately with a value of 0.96, by conveying an equiva-

lent value between them. Subsequent paragraphs, however, are indented. 

Table 3: Stratified Evaluation Metrics on Intended Algorithm over Iris Dataset. 

Stratified evaluation metricsover iris dataset AutoTLBO AutoSpss TLBO AutoITLBO 

MAE 0.479 0.035 0.444 

RMSE 0.157 0.471 0.157 

RAE 9.65% 7.87% 100% 

RRSE 32.98% 33.63% 100% 

SSE 7.817 7.987 49.87 

Average precision value 0.947 0.96 0.111 

Average recall value 0.947 0.96 0.333 

Average f-measure 0.947 0.96 0.167 

The statistical properties studied in Table 3 justify AutoSpssTLBO is well featured to evaluate the 

performance of real-time datasets, and AutoTLBO follows it. Table 4 presents the centroid table of glass 

dataset when applied over three algorithms presented in this work. The 7 centroids attained over 9 at-

tributes of glass dataset are recorded after 50 independent runs. Holistically, the centroid values pro-

duced in AutoSpssTLBO quotes better benefits than the other two contending algorithms in this study.  

Table 5 represents the stratified evaluation methods by comparing three algorithms on glass da-

tasets. The values considered in this table are recorded after 50 independent runs.  MAE and RMSE are 

less influenced towards error by producing 0.0743 and 0.2374 respectively in AutoSpssTLBO as they are 

scoring values to lower boundary; subsequently, they are followed by 0.1026 and 0.2897 in AutoTLBO. 

The same set of implication is also shown in RAE and RRSE values of AutoSpssTLBO by marking a low 

magnitude of total errors with 35.07% and 73.13 % respectively. AutoSpssTLBO attains minimum SSE 

with 42.82 when compared to other contending algorithms. The performance of AutoSpssTLBO when 

investigated with f-measure, precision and recall values produces acceptable terms of 0.768, 0.752, and 
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0.751 respectively scoring higher values towards upper boundaries and more concisely followed by Au-

toTLBO. The overall impression after applying stratified evaluation metrics mentioned in Table 8 over 

glass data is AutoSpssTLBO exhibits peak performance in all the sections.  

Table 4: Centroid Table of Glass Dataset Attributes after 50 Independent Runs. 

Attributes 

of glass 

dataset 

AutoTLBO 

Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 

RI 1.5184 1.5169 1.5189 1.5178 1.5173 1.519 1.525 

NA 13.0645 14.5497 12.9221 13.2148 13.2341 13.3847 12.7925 

MG 3.507 0.5666 0.7186 3.4261 3.4245 3.5654 0.1967 

AL 1.1645 2.0369 2.0379 1.3552 1.4857 1.1263 1.1367 

SI 72.7225 73.0772 72.3929 72.6526 72.6587 72.5389 72.1883 

K 0.475 0.2947 1.365 0.527 0.5561 0.3946 0.215 

CA 8.839 8.4513 10.1779 8.5648 8.4098 8.8333 12.97 

BA 0.012 0.9425 0.1743 0.023 0.0025 0.014 0.2625 

FE 0.2035 0.0122 0.0564 0.2013 0.0102 0.0093 0.1017 

 AutoSpssTLBO 

 Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 

RI 1.5217 1.5165 1.5197 1.5266 1.5167 1.5176 1.518 

NA 13.77 14.56 13.01 12.64 13.25 13.02 13.195 

MG 3.755 0 0 0 3.52 3.52 3.555 

AL 0.85 2.06 1.75 1 1.52 1.28 1.395 

SI 71.785 73.11 72.715 72.19 72.75 72.96 72.54 

K 0.115 0 0.47 0.1 0.61 0.57 0.565 

CA 9.59 8.62 11.05 13.3 8.12 8.56 8.44 

BA 0 0.81 0 0 0 0 0 

FE 0 0 0 0 0 0 0.175 
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 AutoITLBO 

 Cluster 0 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 

RI 1.5255 1.5213 1.5175 1.5173 1.5171 1.5189 1.5175 

NA 12.6318 13.7819 14.6467 13.028 14.4421 12.8277 13.204 

MG 0.2145 3.7204 1.3056 3.4787 0.5383 0.7738 3.4704 

AL 1.1891 0.8863 1.3667 1.2751 2.1228 2.0338 1.4539 

SI 72.0709 71.8767 73.2067 72.95 72.9659 72.3662 72.6567 

K 0.2345 0.1848 0 0.5522 0.3252 1.47 0.5699 

CA 13.1291 9.3826 9.3567 8.516 8.4914 10.1238 8.4084 

BA 0.2864 0.0352 0 0.0016 1.04 0.1877 0.0096 

FE 0.1109 0.0585 0 0.0549 0.0134 0.0608 0.0743 

Table 5. Stratified Evaluation Metrics on Intended Algorithm over Glass Dataset. 

Stratified evaluation met-

ricsover glass dataset 
AutoTLBO 

AutoSpss 

TLBO 
AutoITLBO 

MAE 0.1026 0.0743 0.2118 

RMSE 0.2897 0.2374 0.3245 

RAE 48.45% 35.07% 100% 

RRSE 89.27% 73.13% 100% 

SSE 46.71 42.82 49.94 

Average precision value 0.67 0.768 0.126 

Average recall value 0.66 0.752 0.355 

Average f-measure 0.64 0.751 0.186 
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Table 6: Centroid Table of wine Dataset Attributes over Proposed Algorithms after 50 Independent 

Runs. 

Attributes 

of wine 

dataset 

AutoTLBO AutoSpssTLBO AutoITLBO 

Cluster 

0 

Cluster 

1 

Cluster 

2 

Cluster 

0 

Cluster 

1 

Cluster 

2 

Clus-

ter 0 

Clus-

ter 1 

Clus-

ter 2 

Alcohol 13.73 13.15 12.25 13.15 13.73 12.25 13.74 13.13 12.27 

Malic 2.00 3.34 1.90 3.34 2.00 1.90 1.76 3.28 1.61 

Ash 2.45 2.43 2.23 2.43 2.45 2.23 2.44 2.38 2.24 

Alcalinity 7.25 21.43 20.06 21.43 17.25 20.06 16.9 21 20 

Magnesi-

um 
106.88 99.02 94.04 99.02 106.83 94.04 104.5 96.5 88 

Phenols 2.84 1.67 2.25 1.67 2.84 2.25 2.82 1.64 2.2 

Flavanoids 2.98 0.79 2.07 0.79 2.98 2.07 2.97 0.69 2.03 

Nonfla-

vanoids 
0.28 0.45 0.36 0.48 0.28 0.36 0.28 0.47 0.36 

Proantho-

cyanins 
1.90 1.16 1.62 1.16 1.90 1.62 1.85 1.10 1.58 

Color 5.49 7.34 3.05 7.34 5.49 3.05 5.4 7.4 2.9 

Hue 1.06 0.68 1.05 0.68 1.06 1.05 1.07 0.67 1.04 

Dilution 3.16 1.69 2.78 1.69 3.16 2.78 3.17 1.68 2.83 

Proline 1113.53 627.55 512.82 627.55 1113.53 512.82 1087.5 622.5 491.5 

Table 6 shows the centroid table of wine dataset attributes when applied over the proposed set 

of algorithms. The observation from this Table 6 is AutoSpssTLBO relatively has better centroid values 

than AutoTLBO or AutoTLBO in all the attributes of wine dataset. Table 7 exhibits the stratified evalua-

tion metrics imposed on wine dataset. The values posted in this table are the outcomes after 50 inde-

pendent runs. It was a bright indication from the table that, the MAE and RMSE values denominated for 

AutoSpssTLBO are less influence towards error.  

The other fact considered from this table is the value of RAE and RRSE metrics applied over Au-

toSpssTLBO are scaled down towards lower values. The RAE and RRSE values sense all the errors are of 

the same magnitude. The SSE values are shown in AutoTLBO, AutoSpssTLBO is equal and is towards the 
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lower end. The standpoint from all these observations incriminates AutoSpssTLBO outperforms in all the 

stratified evaluation metrics. Consequently, AutoTLBO is the front-runner in the comparing algorithms. 

Fig. 4 represents the automatic clusters imparted by AutoSpssTLBO in real-time datasets.The figure de-

pictedin Fig. 4 shows the obtained clusters which were well separatedrepresenting data points into op-

timal number of groups. The imparted clusters holds the property that data points in the same sets are 

more alike to other data points in the same set than those in other sets. 

 

Fig. 4. Automatic Clusters Imparted by AutoSpssTLBO in Real-Time Datasets. 

Table 7: Stratified Evaluation Metrics on Intended Algorithm over Wine Dataset. 

Stratified evaluation metrics 

over wine dataset 
AutoTLBO AutoSpss TLBO AutoITLBO 

MAE 153.98 121.97 260.30 

RMSE 151.06 205.87 315.21 

RAE 59.15% 46.85% 100% 

RRSE 65.31% 47.92% 100% 

SSE 49.84 49.84 251.01 

1.2 Interpreting Results on Micro-array Datasets  

In this experiment, the results appeared in research articles [8, 11], [7] and [6] over micro-array 

datasets are consolidated, and a conceivable assessment of the intended methods is conducted. Table 8 

represents the values occurred in the three algorithms.  

Table 8 summarizes the results of all the three themes proposed in this work. Yeast datasets of 

different sizes are considered for observation. Interestingly AutoSpssTLBOexhibits better performance in 

attaining some automatic clusters, % of error rate and minimum error rate. The same was reciprocated 

in CVIs, i.e., in most of the cases, almost four CVIs favored AutoITLBO and is forefronted by Au-

toSpssTLBO. Table 9 presents centroid table of AutoITLBO and AutoSpssTLBO over yeast 238 dataset. 
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The centroids represented in this table are recorded after executing the algorithms after 50 independ-

ent runs. The centroid values are given as negatively scaled values in this yeast 238 datasets for all its 17 

attributes. Table 10 exhibits the stratified evaluation metrics imposed on intended algorithm over yeast 

238 dataset 

Table 8: Mean Values of Automatic Algorithms after Completion of 50 Independent Runs over Micro-

Array Datasets. 

Datasets 

(dim, n) 
Algorithms 

No. of 

Auto 

Clus-

ters 

ARI RI SIL HIM CS DB 

% of 

Error 

Rate 

CPU 

Time        

(MSec

) 

Yeast238 

(238*19, 

4) 

AutoTLBO 4.20 
0.92

10 

0.972

0 

0.951

0 

0.944

0 

1.646

0 

1.06

90 
5.80 25.07 

Au-

toSpssTLBO 
4.00 

0.687

9 

0.853

7 

0.696

3 

0.970

2 

0.807

5 

1.491

2 
83.07 

355.5

6 

AutoITLBO 4.10 
0.914

0 

0.98

21 

0.98

74 

0.99

48 

0.93

14 

1.104

0 
3.68 22.14 

Yeast384 

(348*19, 

5) 

AutoTLBO 5.40 
0.95

20 

0.907

0 

0.829

0 

0.91

40 

1.696

0 

1.088

0 
8.937 40.84 

Au-

toSpssTLBO 
5.00 

0.522

8 

0.793

0 

0.417

0 

0.746

1 

0.566

0 

1.242

4 
65.20 

593.4

0 

AutoITLBO 5.10 
0.958

0 

0.98

77 

0.96

32 

1.258

0 

1.04

70 

0.97

84 
8.67 38.96 

Yeast288

5 

(2885*19

, 6) 

AutoTLBO 6.40 
0.82

10 

0.81

00 

0.89

10 

0.72

10 

2.912

0 

1.505

0 

38.4

1 

1700.

70 

Au-

toSpssTLBO 
6.10 

0.650

2 

0.649

0 

0.351

0 

0.120

7 

1.19

80 

1.631

0 
74.15 

1552.

17 

AutoITLBO 6.24 
0.740

0 

0.784

0 

0.714

0 

0.719

0 

0.763

0 

1.14

80 
79.4 

1593.

5 

Yeast294

6 

(2946*18

, 6) 

AutoTLBO 5.60 
0.85

10 

0.87

90 

0.726

0 

0.85

90 

2.325

0 

1.502

0 

35.4

7 

1100.

80 

Au-

toSpssTLBO 
6.20 

0.668

7 

0.689

6 

0.410

4 

0.609

3 

0.87

92 

0.87

47 
81.02 

3138.

78 
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AutoITLBO 5.49 
0.748

0 

0.815

0 

0.84

30 

0.714

0 

0.740

0 

0.814

00 
78.90 

3258.

00 

Yeast438

2 

(4382*25

, 6) 

AutoTLBO 6.20 
0.72

10 

0.66

30 

0.74

70 

0.82

60 

3.702

0 

2.016

0 

44.2

7 

3510.

24 

Au-

toSpssTLBO 
6.00 

0.012

5 

0.632

6 

0.367

4 

0.784

1 

1.265

3 

1.52

18 
81.02 

3138.

7 

AutoITLBO 6.00 
0.489

0 

0.654

0 

0.641

0 

0.679

0 

0.84

30 

1.846

0 
93.40 

3364.

1 

The diagnose report on Table 10 justifies AutoSpssTLBO less sensitive to errors. Such implication 

justifies that the scores are given MAE and RMSE, i.e., 0.3611 and 0.4979 since these values are relative-

ly low when compared to other two themes given in Table 8. The forecasted error % of AutoSpssTLBO 

algorithm’s RAE and RRSE values and SSE are comparatively small than its contenders.  The commenda-

tion from this Table 8 is the proposed AutoITLBO, and AutoSpssTLBO algorithms are noteworthy to apply 

over microarray datasets to extract patterns from microarray datasets. 

Fig. 5 shows the clustergrams imparted by AutoSpssTLBO in yeast 238 micro-array da-

tasets.Theclustergrams given in Fig. 5 isolatesets with alike traits and disperse them into clusters by scrutiniz-

ing the cluster affiliates. 

Table 9. Centroid Table of Yeast 238 Dataset over AutoITLBO and AutoSpssTLBO. 

Attributes of 

yeast 238 

dataset 

AutoITLBO AutoSpssTLBO 

c1 0.39 -0.63 -0.73 -0.66 -0.65 -0.63 -0.09 -0.34 

c2 0.19 -0.40 0.01 -0.41 -0.05 -0.46 0.30 -0.31 

c3 -1.16 0.35 1.62 -0.20 1.69 0.37 -0.92 -0.74 

c4 -0.99 -0.26 0.36 0.48 0.91 -0.25 -0.95 -0.30 

c5 -0.71 0.06 -0.28 0.85 0.42 0.06 -0.59 0.07 

c6 -0.51 -0.81 -0.50 0.91 0.05 -0.82 -0.48 0.28 

c7 -0.52 -0.45 -0.39 0.18 -0.37 -0.44 -0.46 0.08 

c8 -0.41 -0.47 -0.41 -0.02 -0.71 -0.44 -0.60 0.31 

c9 0.19 -0.81 -0.17 -0.15 -0.63 -0.81 -0.03 0.39 
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c10 0.41 2.88 0.81 -0.63 0.11 2.97 0.71 -0.01 

c11 0.48 0.24 0.99 -0.46 0.59 0.23 0.66 -0.24 

c12 0.44 -0.13 0.49 -0.20 0.50 -0.15 0.41 -0.22 

c13 -0.02 -0.70 -0.03 0.27 0.15 -0.71 -0.08 0.05 

c14 0.19 0.18 -0.31 0.22 -0.15 0.19 0.15 0.15 

c15 0.21 0.04 -0.43 0.09 -0.41 0.04 0.12 0.22 

c16 0.80 0.54 -0.64 -0.08 -0.72 0.51 0.88 0.26 

c17 1.03 0.35 -0.40 -0.20 -0.71 0.35 0.99 0.34 

 

Fig. 5: Clustergramsimparted by AutoSpssTLBO in Yeast 238 Micro-Array Datasets. 

Table 10: Stratified Evaluation Metrics on Intended Algorithm over Yeast 238 Dataset 

Stratified evaluation metrics over yeast 238 dataset AutoTLBO AutoSpssTLBO AutoITLBO 

MAE 0.658 0.3611 0.5478 

RMSE 0.384 0.4979 0.5159 

RAE 65.28% 61.36% 69.47% 

RRSE 77.94% 67.14% 69.32% 

SSE 90.78 88.79 91.45 

As this study is aimed to identify peak performers among the datasets shown in Table 1, a pro-

ductive introspection on results of these set of three algorithms are conducted, based on the optimiza-

tion metrics and stratified evaluation the following conclusion is drawn. Conceptually, all the algorithms 
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are well coded by amalgamating partitioning clustering technique into evolutionary approaches and 

after that are optimized efficiently with a wide range of functions.  The assumed set of three algorithms 

can automatically find an optimal number of the cluster in any dataset without any human intervention, 

relatively with low % of error rate and less CPU time. The adopted CVIs in this work were able to validate 

a reasonably good index function value with its high mathematical and statistical function.  

An elegant and versatile impression from the user thought process after having live experiences 

over real-time and micro-array datasets are the second algorithms in the comparing algorithm Au-

toSpssTLBO evidently rationalize cluster problems to its best the first algorithms AutoTLBO. Hence the 

algorithms AutoSpssTLBOAutoTLBO are explicitly revealed and presented for natural interpretation to 

quote peak performers of this work. The methods were able to discover automatically statistically signif-

icant and hidden patterns in datasets for meaningful groupings. 

3. Conclusion 

With a small contribution to improving the general standard of conventional clustering towards 

automatic clustering, this study relates useful tips. The hope towards further recommendations and 

modification to the technology is to replace the baseline TLBO algorithm with any other evolutionary 

approach. In a nutshell, the subject of this study was to do automatic clustering by optimizing multiple 

objective functions in a single run with an evolutionary approach. To streamline this legacy, an automat-

ic clustering framework is accelerated with an initial seed selection policy, into multiple variants of TLBO. 

This impressive recital manifested a set of three automatic clustering algorithms (AutoTLBO [8, 11], Au-

toSPSSTLBO [7], AutoITLBO [6]). All these possible algorithms accelerated self-learning clusters by ascer-

taining cluster properties, such as cohesion and separation and amides with minimum error rate over 

real-time and micro-array datasets. The results engendered by this work are well endorsed by CVI’s and 

by retaining modest spike over other contending algorithms.  

This study makes a philanthropic urge towards intuiting future research directions. The seduc-

tive logic in this evolutionary automatic clustering framework earmarked with an assemblage of initial 

seed selection algorithm, and cognitive advancements of TLBO. This proposal is adaptable to any inno-

vative experimentation either by replacing SPSS with any other initial seed selection algorithm, nor the 

bed rocked TLBO evolutionary algorithm. 
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