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 Abstract 

In the past , a lot of study has been investigated in the field of resource management and control. Inventory management 

and control system is essentially concerned with demand and supply chain concerns. There are essentially various stock 

levels, such as raw components, finished goods, etc. Maintaining a high amount of inventory for a long period in the 

premises of a business company is typically not profitable for a business due to high keeping costs and degradation. 

However, holding a small amount of inventory is also not profitable, as it creates a problem of stock-out during high 

demand for goods at the point of sale. As a result, proper inventory management is needed to operate the company 

perfectly from an economic point of view. In the present study ,author has implemented two algorithm in accordance to 

EOQ inventory model i.e. Adaptive Particle Swarm Optimization(APSO ) and Firefly algorithm. In this research author has 

done a comparative analysis for examine cost of inventories. In result author has found that APSO gave better 

performance as compare to Firefly algorithm. 
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1.Introduction 

Study of inventory control is the focus of nearly all industrial operations. Inventories are nothing 

but resources processed, preparing for processing, or undergoing processing. An observation of 

virtually every business balance sheet shows, for example, that a large portion of its inventory 

contains raw material inventories, parts and subassemblies and finished products during 

manufacturing. Inventories of raw materials provide a reliable supply of output input. In-process 

inventories mitigate the consequences of a plant's fluctuations in output rates and also protect 

against process failures. Variety and fast distribution of the commodity are the main marketing 

factors. A broad inventory demands less replenishment and, due to economies of scale, can 

decrease ordering costs. The presence of an inventory indicates a temporary difference in supply 

and demand for two operations. An inventory is an amount of material stored for sale or 

production. Inventory control for tangible commodities, materials or other components for all 

sectors of the economy such as business, manufacturing, agriculture, defense etc., is part and 
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parcel of a logistics framework. An inventory may be required in an economy that is perfectly 

predictable to benefit from the economic features of a specific technology or to coordinate or 

monitor the development process in order to follow changing trends of demand. Inventories are 

used as a buffer against stock-up losses when uncertainties are present. 

A policy on inventories is a series of decision-making regimes that decide "when and how much." 

The goal function in an inventory dilemma can take different forms. Typically this means minimizing 

the expense or enhancing the benefit function. 

Inventory related costs: 

I) Costs of procurement are the purchase costs of an object device. 

(ii) Cost of ordering is a fixed cost of purchasing products by ordering. 

(iii) Holding costs are the expense of keeping the product (or holding). 

(iv) The cost of the shortage shall be the cost of the penalty for running out of stock. 

Just-in-time (JIT) or null inventory mechanism is a perfect inventory management principle 

whereby manufacturing processes will supply whatever material is needed and 100% supply 

protection as required without maintaining an inventory (Vrat , 2014)There is considerable 

uncertainty in lead times in most production situations, since the supply environment is probably 

just-in-case (JIC), and is generally for the automotive sector. As a buffer to contend with supply 

volatility, inventory should be retained. (Monden, 2011). Inventory is the premium charged to a 

Just in Case supply management by a company. This study is an expansion of (Simi c et al.,  

2018)(Simi c et. Al., 2019), which introduces numerous swarm intelligence approaches of inventory 

control, but limits development costs depending on commodity demand and the price of goods to 

minimization. This paper provides a new analysis efficiency focused on a study of the two methods 

used to improve inventory management. One of the approaches used is Adaptive Particle Swarm 

Optimization (APSO) and the 2nd  is Firefly Algorithm (FFA) for modeling inventory management in 

the production method. 

2. Review of Literature 

With aid of effective preparation and control, cost savings and value maximization of the inventory 

of raw materials can also be ensured. For a long time, the simulation of this inventory control 

management had been a research concern among industrial engineers. (Agrell , 1995) suggested an 

inventory management issue multi-criteria system in which IDEM was used to assess batch size and 

stock protection. A single complex, multi-item inventory management model was proposed by 

(Dolgui & Ould-Louly, 2001)  to calculate the average cost of keeping and determine probabilities 

with leadtime uncertainty. 

(Ertogral , 2008), including transport costs dependent on the Lagrangian rule, solved the issue of 

multi-item single source picking. (Lee & Kang ,2008) developed a commodity inventory control 

model for many periods. First, their paradigm was derived for one object and then applied to many 

items. Related to evaluating many components, the researchers have taken an interest in multi-

objective models. 

(Roy & Maiti, 1998) implemented multi-purpose stock models of decaying products to increase 

benefit and reduce wasting costs in a smooth setting. But it didn't recognize any scarcity 
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(Pasandideh et al. , 2013) studied a bi-target economic issue in output quantity of damaged 

products conceived as a multi-target nonlinear model of programming with the purpose of finding 

the order amounts of the commodity in order to reduce overall inventory costs and the necessary 

warehouse space. 

(Mousavi et al. , 2014), together with these goals, established a multi-item multi-purpose stock 

management model for known-deterministic budgetary requirements. The stock model for fad 

deteriorating at the end of the defined time was 1st  examined by Whitin (1957). Most of  scholars 

have seen their inventory models deteriorate constantly in the past. (Ghare et al., 1963). initially 

developed an economic order quantity stock model of continuously growing demand and a 

persistent decline in the final plan horizon . 

(Krishnaraj et al. , 2012) have found a scarce stock model. The inventory model is known as a time-

dependent keeping model for (Sharma et al. , 2012) and (Amutha et al. , 2013,b) The demands on 

one object is supposed to be continuous in the classical EOQ (Economic Order Quantity) model 

developed in 1915. Stock models of constant demand values are used by researchers (Misra RB, 

1975), ), (Shah Y.K ,1977), (Raafat , 1991) (Ritchie ,1984). The inventory model for products with 

various constant rates for degrading demand has been developed by (Singh et al. , 2012). 

A multifaceted inventory routing issue with continuous demand rates was created by (Zhong et al. 

,2012).A inventory model with a degradation rate and constant demand from Weibull was 

proposed by (Mishra , 2012). A model inventory for continuing demand was developed by (Amutha 

et al., 2013a) under the allowable time for payment. (Tripathy, 2013) has further developed a 

model of inventory with a range of demand rates and prices. (Kumar et. al., 2013) have established 

a general model for inventorying weibull goods that are declining with persistent demand 

influenced by partial time-based backlog and decline. 

A single quadratic demand inventory problem has been developed by (Bhandari et al., 2000). For 

(Weibull, Tripathy et al., 2010) developed a model of stockpiling for quadratic demand products, 

with allowable payment delays. (Begum et al., 2010) also established a concept of inventory order 

standard for items that are quadratically complicated. The inventory practice was investigated for 

perishable goods with a model of quadratic demand, under which period depended on 

depreciation (Misra et al. 2012).  

(Panda et al. , 2012) also examined ongoing weakening regulation of quadratic demand-rate 

capital. An inventory model for quadratic request and partial retrieval degradation of items was 

also developed by (Begum et al. , 2010). For publications that decrease in quadratic demand, (Kaur 

et al. , 2012) established the order inventory development system. A three-echelon convergence 

supply chain storage model for quadratic and efficient demand peretible items and two parameter 

depreciation have been developed by (Trivedi et al. , 2013). 

 (Singh et al, 2013) have provided a model of economic order quantity for the degrading product, 

subject to permissible payment delays and with time-based quadratic demand and vector 

worsening. A model inventory has been evaluated of the quadrant requirement, continuous 

degradation and the importance of rescue in 2014 (Venkateswarlu et al., 2014). (Venkateswarlu et 

al. , 2014).  

For non- instantial degrading products with stock-related and partial backlogging, Wu et al. (2005) 

found optimum refill strategy. (Ouyang et al. , 2006), for non-instantly decaying goods and 

allowable payment waits, found a fitting inventory model. The missing data of (Ouyang et al., 2006) 

has been completed by (Chung , 2008). The economic order quantity model for non- immediate 

degrading products with allowable time-to-payment was suggested by (Geetha et al. , 2009). 
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(Chang et al., 2010) suggested the optimum refill policy for non-instantly declining inventory-based 

supplies. (Chang et al., 2010) model from two dimensions expanded by (Soni, 2013I) the rate of 

demand as a multivariable price and inventory level function and (ii) the permitted delay of 

payment. Furthermore, by treating the sale of the inventories as rescues and all potential recovery 

periods, (Soni, 2013) has been expanded further to cover less than the time of the non-

deterioration. 

In terms of allowable late payment delays, (Goyal, 1985) was the first person to suggest a model of 

the economic order quantity. (Aggarwal et al., 1995) The model for decaying products has been 

applied to (Goyal ,1985) model. . (Aggarwal et al., 1995) The model was further broadened to cover 

shortages by (Jamal et al., 1997). Under the authorisation for a time period of payments 

depredating the amount, (Chung et al. , 2005) established an Optimum Inventory Strategy The 

economic order quantity model for non- immediate degrading products with allowable time-to-

payment was suggested by (Geetha et al. , 2009). 

The model of economic quantities was first developed by (Buzacott , 1975) in light of the influence 

of inflation. (Datta et al. ,1991) analyzed inflation and the money's time value effects at the level of 

production and scarcity based on linear time. (Hariga et al. , 1996) treated the model of inflationary 

batch sizing as optimum time vector.  

In view of the inflation effect and monetary value, the model of quantity of the economic order for 

improving/degrading goods with time-different patterns in demand was considered ( Moon , 2005). 

An inflation inventory model for the deterioration of stock-based items with partial backlog 

shortages has been established (Yang et al., 2010). (Singh, 2011) considered a model of economic 

order quantity for goods with linear inflation demand and permissible payment latency. A stock-

based demand inflation-induced stock model was built with an allowable payment delay (Singh et 

al., 2014). The inventory model has been developed for non-instantaneous publications with partial 

backlogging (Ghoreishi et al. , 2015). 

The research (Sustrov a , 2016) provides an efficient investigation into the modeling and prediction 

of artificial neural networks in the fields of stock management, especially the issue of lot-sizing. In 

the study, many forms of neural networks are generated and evaluated for the most effective 

design of neural networks. 

For a sequential supply chain, demand frequency and lead period are implemented and developed 

into an optimized inventory forecasting model that minimizes the total costs incurred, including 

procurement, inventory keeping, packaging and transport. Duan and Ventura, 2019) introduces the 

MILP formulation to solve this multi-period, multi-supplier and multistage issue with the 

predetermined market for a single commodity. 

A variety of nature-inspired metaheuristic algorithms have been proposed to refine the solution by 

searching in large search spaces. PSO is one of the metaheuristic algorithms used to solve the 

global optimization problem. (Kennedy and Eberhart , 1997)( Guan et. al.,2019) developed this 

algorithm by studying the social behavior of birds or fish flocks. Since then, several researchers 

have been experimenting with this algorithm to solve inventory based optimization problems. PSO 

is sufficient to solve a single objective optimization problem, but a change is necessary to solve a 

problem consisting of multiple competing objectives. At the beginning of 2000, (Coello & Lechuga , 

2002) suggested a new method called MOPSO which was a constrained multi-objective formulation 

of  PSO. In order to meet the customer's desired minimum cost or budget requirement, much of 

the real-life inventory challenge may be recast into a multi-objective optimization dilemma. PSO is 

an effective meta-heuristic algorithm that achieves outstanding efficiency in a wide range of 
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optimization problems(Parouha and Verma ,2021).( Tsou , 2008) built such a model and applied 

MOPSO to create the Pareto front of non-dominated solutions and sorted them using order 

preference methodology close to the ideal solution (TOPSIS) according to the preference of 

decision makers. (Mousavi et al., (2014)  (Chanet. Al., 2020) used MOPSO to address a multi-item 

multi-period inventory planning model of known deterministic demand under a small budget. 

Storage space is another essential decision that comes with asset control as the decision to retain 

more inventory and storage space needs provide a cost-contradictory objective. (Tavana, 2016) 

analyzed an inventory optimization problem with the goal of finding Pareto an optimal solution at 

various times and at the same time minimizing total inventory costs as well as total storage 

capacity. As both of these proposed algorithms are very sensitive to parameters, the Taguchi 

approach was used in this model to change the parameter level and the response variable of the 

model. This approach also has the advantage of having a near-optimal solution. 

 

2.1 Research gap 

Thus, it is convenient to overcome the limitations of traditional methods .From above review of 

literature it is clear that firefly algorithm has not used of optimization . So in this study we have 

implemented APSO algorithm and Firefly algorithm for optimization and then compare their result 

for approaching minimize cost of inventories. 

3. Mathematical Model Formulation 

3.1 Objective Functions 

Total inventory cost is the 1st objective function of this model which can be obtained as 

Total Inventory Cost = Total Demand Cost + Total Transportation Cost 

 3.2 The Proposed Work 

There are two types of algorithm used in this research. 

1) Adaptive Particle swarm optimization (APSO). 

2) Firefly algorithm.  

1) Adaptive Particle Swarm Optimization (APSO) 

Initial position of the particle i is . In the search space particles interact with each other and after 

learning their position, particles increase their velocity,  to find the best solution for the problem. 

Local best solution or   is the personal best position for each article which is obtained by updating 

the position by    and end vector has an velocity of   . 

Among the representatives of the swarm denoted by g(t) as the best global approach, there is a 

common experience of the best. Therefore, the equation is – 
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Figure 1: Steps of APSO algorithm. 

2) Firefly algorithm 

 Another intelligent swarm-inspired algorithm implemented by (Yang, 2009) is the Firefly Algorithm 

(FFA) .The origin of the FFA is imitated by the true actions of fireflies, as its appellation suggests. 

This producing light is known as a means of contact between fireflies and also as a lure for beasts. 

Therefore, the FFA mathematical formulation, representing fireflies' motions, is based on the lights 

produced and their intensity. In this scenario, smaller, random fireflies are attracted to light flames. 

The lighter is moved from hereafter, the less bright. With distance the attraction and pressure 

decline. The brightness of a firefly reflects the consistency of the solutions. Firefly shifts at random 

if there is no lighter firefly visible. FFA has been developed to solve major problems(Atabaki, et. 

Al.,2019). The following equation sums up a firefly's progress into a lighter firefly j for a specific 

iteration (t+1): 

 

 

Where the attraction effect is shown by  and   signifies the 

randomization concept in which α is the coefficient of randomization; β0 applies to the strength of 

the light in distance r 5 0, and for the majority of instances it is equal to 1; The difference b/W any 

two fireflies I and j, respectively, situated at xi and xj, is the Cartesian distance, that is 

,  
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The fittest one is retained after all the gestures are made by the fireflies. The moving method is 

iterated until it satisfies a termination condition. 

 
Figure 2: Steps of Firefly algorithm. 

 

4. Result and discussion 

The presumption to be considered is: To define optimum levels of output and distribution within 

warehouses and outlets: 

1. Lead time is zero 

2. The time-dependent deterioration rate is considered 

3. The shortage is permitted. 

Assume that for the scaling parameter N a certain value applies: 
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These facilities are in the x and y directions at various integer grid points between 1 and N. To have 

separate sites, w+1 is required. In order to have separated sites. Take  and s=0,05 and 

s=0,1, respectively.P goods from the factories are made. 

 

A retail outlet d is required for each commodity  The criteria is the quantity which can be 

sold over time. The need to produce and deliver the necessity amounts is fulfilled, suggesting that 

each warehouse has limitations in capability  

The quantity of product p moved from warehouse w to supermarket outlet is less than rotation (p) 

while rotation(p) is the p product's turnover amount. 

Assume that all outlets are provided from just one warehouse. Part of the challenge is how to map 

units of cheap delivery to warehouses. 

Costs: The expense of shipping the goods from the warehouse to the delivery center depends on 

how far the factories from each material are situated. If dist (a,b), as long as the transport costs 

tcost(p) is beyond the gap between installations (a) and (b), transport costs of the commodity p 

shall be: 

 

The gap is also regarded as the radius L1, in the present case the grid distance. This is the full 

comparison between x and y. 

Optimization Problem 

Provided a collection of locations and limitations on specifications and capacity, a product delivery 

schedule from warehouses to outlets .These sums must be guaranteed to meet demand and 

mitigate overall costs. Each sales outlet is also required from exactly one warehouse to obtain all its 

goods. 

Variables for the Optimization Problem 

In order to adjust optimization, the control variables are  binary variable with the 

value of 1 if the warehouse w. 

The aim is to reduce 
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The constraints are: 

Capacity of Warehouse 

Fulfilled Demand. 

 

 

 

In the target and restriction functions, the variables x and y are linear. The problem is a mixed-

integer linear program, since it is limited to integer values (MILP). 

 

Generate a Random Problem: Facility Locations 

Set the values N, f, w and s and find the facility. 

 

Figure:1 Facility locations 

Generate Random Capacities, Costs, and Demands 
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% Capacity for each commodity or warehouse between P*400 and P*800 

 
% Rate of product turnover for each product from 1 to 3 

 
% The cost of product transport for each product per distance from 5 to 10 

 
% Product market demand for each 200 to 500 sales outlets 

 
 

 

Integer Variables and Bound Constraints  

 

The integer variable is length (obj1) + 1 up to the end. 

 
Len(obj1) + 1 to end also extends the upper limits. 

 

 

 
 

 

 
Figure: 2 Mapping of warehouse distribution outlets 

The unused warehouses are the black * without green lines. The minimization of the total cost is 

considered as a goal function during the execution of the APSO and the Firefly algorithm. The APSO 

algorithm takes fewer iterations while the original firefly algorithm requires approximately two 

iterations in order to achieve the optimal solution. Compared with the firefly approach the 
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proposed APSO algorithm also achieve a high rate of convergence. As a result, the results in figures 

3, 4, 5 and 6 indicate the dominant optimality and convergence superiority of the APSO algorithm 

over the Firefly algorithm. 

 
Figure: 3APSO for used capacity, Inventory and order amount w.r.t time 

 
Figure: 4 Cost optimization with APSO 
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Figure: 5 Firefly for used capacity, Inventory and order amount w.r.t time 

 
Figure: 6 Cost optimization with Firefly algorithm 
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5.CONCLUSION 

Due to a scarcity of assets and environmental suspicions, inventory management has become a 

region of great importance for the improvement of productivity. The study attempted to contribute 

to understanding the application of inventory management strategies for worsening inflation 

shortage items that are closer to reality. An ECONOMIC ORDER QUANTITY model has been 

developed for decaying items with power demand, partial backlogging and inflation. We concluded 

that the lifetime of deteriorating items and inflation rate increases, increasing the initial level of 

inventory, but reducing the total average inventory cost with partially permissible shortages. With 

the help of assumptions in this model, we conclude that when consumer goods in the market are 

affected by stock levels under inflation, time discounts and partially backlogged shortages, the 

optimal replenishment policy is more valuable. Adaptive PSO algorithm is used for cost 

optimization and compares the results with firefly algorithm. 
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