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Abstract 

In this paper, weextend  the satisfaction of  Prime Graceful Labeling for the Graphs, Pan Graph, Helm Graph & Triangular Snake 

Graphand also generalize the cardinality of the edges for Triangular Snake Graphs. 
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1. INTRODUCTION  

Throughout this paper we consider the graph which is simple, finite and not directed. In this paper, we 

discuss the ideaof Prime Graceful Labeling introduced by T.M.Selvarajan&R.Subramoniam [5] and we 

extend the Prime Graceful Labeling for some graphs such as Pan Graph, Helm Graph & Triangular Snake 

Graphs and also generalize the cardinality of the edges for Triangular Snake Graphs. 

2. PRELIMINARIES 

The map  kV ,...,2,1: →  represents a one to one function from the vertices of G to {1,2,…,k}.  Here k 

denotes the maximum number of vertices. Now the map  1,...,2,1: −→ kE  represents the 

induced one to one function from the edges of G to {1,2,…,k-1}. Here k-1 denotes the maximum number 

of edges. 

3.PRIME GRACEFUL LABELING FOR SOME SPECIAL GRAPH 

Theorem 3.1 

Pan Graph n, where n 3, is Prime Graceful Labeling.  

Proof 

Given Graph is Pan Graph n, where n 3. 

Define a map  kV ,...,2,1: → &  1,...,2,1: −→ kE Here K=2(n+1) & .Vk  There must be a 

vertex say v with maximum degree in the Pan Graph n, & label that as1. And the remaining vertices , vi  

(i=1 to n) of the Pan Graph are labeled with distinct number from {2,3,…,k} in such a way that labeling of 

every pair of adjacent vertices has the GCD 1. Let we assign the edge labels (1,2,…,k-1) in the following 

way,  i.e) ( )ivv = ( ) ( )ivv  − ( )jivv = ( ) ( )ji vv  − where i  j& i=1,2,…,k such that 

labeling of edges are distinct. 

 

Hence by using the above condition, the Pan Graph n has Prime Graceful Labeling.  

Thus the Pan Graph n , where n 3 is Prime Graceful Labeling. 
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Example 3.2 
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                        3-Pan Graph with Prime Graceful Labeling 

Example 3.3 
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4-Pan Graph with Prime Graceful Labeling 

 

Example 3.4                 
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5 -Pan Graph with Prime Graceful Labeling 

Alternative Proof for Pan Graph 

We shall prove that the Pan Graph n is Prime Graceful Labeling by using Mathematical Induction 

Method. 
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 If n=3  letmaps &   are defined  as in preceding proof,  where k=min{2(3+1), 2(3+1)} 

                 k=2(3+1)  k=8 

Let us label the vertex with maximum degree as 1.Let vi  (i=1 to 3) be the other vertices of the Pan Graph 

are labeled with distinct number from 1,2,…,8  in such a way that labeling of every pair of adjacent 

vertices has the GCD 1 & also assign the edge labels   (1,2,…,7) in the following way, i.e) ( )yx vv − =

( ) ( )yx vv  −   where x y & x,y=1,2,…,8 such that labeling of edges are distinct.                                               

n=3                                                                          

                                    2                                                                                                    

1             1         2        3                                   

                                  3             4 

5 

 The Pan Graph n=3 satisfies the above condition. 

 Hence the Pan Graph n=3 is Prime Graceful Labeling. 

 Assume that the Pan Graph n=h, where h is some integer is Prime Graceful Labeling. 

 Next we have to prove that the Pan Graph n=h+1 is Prime Graceful Labeling. 

 Define similar maps as beforehere k=min{2(h+1+1), 2(h+1+1)}  k=2h+4 

 Let v be the vertex with maximum degree in the Pan Graph n & label as 1. 

 Let vi  (i=1 to h) be the other vertices of the Pan Graph are labeled with distinct number from 1,2,…, 

2h+4 in such a way that labeling of every pair of adjacent vertices has theGCD 1& also assign the edge 

labels   from 1,2,…, 2h+3 such that labeling of edges are distinct. 

 The Pan Graph n=h+1 satisfies the theorem. 

 

Theorem 3.5 

 

Helm Graph Hn where n 3, is Prime Graceful Labeling 

 

Proof 

 

The Helm Graph Hnhas 2n+1 vertices and n(2+1) edges. 

Define a map  as in the previous theorem  here k=2(2n+1) 

There must be a vertex say v with maximum degree in the Helm Graph Hn& label that vertex as 1. And 

the remaining vertices, vi  (i=1 to 2n) of the Helm Graph Hn are labeled with distinct number from 

{2,3,…,k} in such a way that labeling of every pair of adjacent vertices has the GCD 1& also assign the 

edge labels (1,2,…,k-1) in the following way, 
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i.e) ( )ivv = ( ) ( )ivv  − & ( )jivv = ( ) ( )ji vv  − where i j& i=1,2,…,k-1 such that labeling 

of edges are distinct. 

Hence by using the above condition, the Helm Graph Hn has Prime Graceful Labeling. 

 Helm Graph Hn , where n 3, is Prime Graceful Labeling. 

Example 3.6   16                                                        4 
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 Helm Graph H4 with Prime Graceful Labeling 

Example 3.7   
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Helm Graph H5 with Prime Graceful Labeling 
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Alternative Proof by Induction 

We shall prove that the Helm Graph Hn is Prime Graceful Labeling by using Mathematical  Induction 

Method. 

 If n=3, label the vertices from 1,2,...k and edges from 1,2,3,.....k-1. 

here k=min{2(2(3)+1), 2(3)(2+1)}, k=min{14,18} k=14 

label the vertex with maximum degree in Helm Graph H3as 1. 

Let vi  (i=1 to 6) be the other vertices of the Helm Graph H3 are labeled with distinct number from 

1,2,…,14  in such a way that labeling of every pair of adjacent vertices has the GCD1& also assign the 

edge labels (1,2,…,13) in the following way, 

i.e) ( )ivv = ( ) ( )ivv  − & ( )iivv = ( ) ( )ji vv  − where i j& i=1,2,…,13 such that labeling of 

edges are distinct. 

    13 
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   2      5    4 
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  8                                               3 

 9                                                         4 

 

Helm Graph H3 with Prime Graceful Labeling 

 The Helm Graph H3 satisfies the above condition. 

 Hence the Helm Graph H3 is Prime Graceful Labeling. 

Assume that the Helm Graph Hn, where n=h, where h is some integer, is Prime Graceful Labeling. 

Next we have to prove that the Helm Graph Hn, where n=h+1 is Prime Graceful Labeling. 

      If n=h+1 
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Let us consider the maps and  defined as before 

where k=min{2(2(h+1)+1), 2(h+1)(2+1)} 

                 k=min{4h+6,6h+6} 

                 k=4h+6 

The vertex whose degree with maximum in Helm Graph Hh+1, is labelled as 1. 

Let vi  (i=1 to h) be the other vertices of the Helm Graph Hh+1 are labeled with distinct number from 

1,2,…,4h+6 in such a way that labeling of every pair of adjacent vertices has the GCD1& also assign the 

edge labels (1,2,…,4h+5) in the following way, 

i.e) ( )ivv = ( ) ( )ivv  − & 

( )jivv = ( ) ( )ji vv  − where i i& i=1,2,…,4h+5 such that labeling of edges are distinct. 

 The Helm Graph Hn , where n=h+1 satisfies the above condition. 

Hence the Helm Graph Hn , where n=h+1 is Prime Graceful Labeling 

 Helm Graph Hn , where n 3, is Prime Graceful Labeling. 

Lemma 3.8 

      The Cardinality of the edges of Triangular Snake Graph TSn is 

E  = 




==

===+=+

33

,...2,1,0&,...2,1,32)2(

iwhereinif

mjiwherejinifmi
 

Proof 

      Let  E denote the number of edges in Triangular Snake Graph TSn. 

      Edges in Triangular Snake Graph TSndepends on the number of vertices in that graph. 

Case(i)   If n=i, where i=3, then 

letTSi = i , where i=3 , TS3 = 3 

Cardinality of the edges of Triangular Snake Graph for TS3 is    

 

     1            2 
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3                       

Case(ii)   If n=i+2j, where i=3, & j=1,thenTSi+2j = 2 i , where i=3 & j=1 

                TS3+2 = 2.3 TS5 = 6 

Cardinality of the edges of Triangular Snake Graph for TS5 is 

 

           1          2      3           4            

 

                 5                  6    

Case(iii)   If n=i+2j, where i=3 & j=2, then TSi+2j = 3 i , where i=3 & j=2 

                   TS3+4 = 3.3 , TS7 = 9 

Cardinality of the edges of Triangular Snake Graph for TS7 is 

 

          1           2     3            4     5           6   

 

                 7                   8                  9    

       Assume the theorem satisfies  forn=i+2j where i=3,j=1,2,3,4,5 & m=0,1,2,3,4 

i.e) TSi+2j = i(2+m),            TS3+10 = 3(2+4)              TS13 = 18 

      Now our claim is the result is true for i=3,j=6 & m=5 in n=i+2j 

      If n=i+2j, where i=3, j=6 & m=5 then 

                     TS3+12 = 7.3,  TS15 = 21 

Cardinality of the edges of Triangular Snake Graph for TS15 is 

 

1         2        3         4       5          6          7          8          9        10       11         12      13     14 

 

15                16                 17                18                  19                  20                  21 

 

In general the Cardinality of the edges of Triangular Snake Graph TSn is 

E  = 




==

===+=+

33

,...2,1,0&,...2,1,32)2(

iwhereinif

mjiwherejinifmi
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Theorem 3.9 

If  3 n<11 & n is odd then TSn is prime graceful labeling. 

Proof 

Given graph is Triangular Snake Graph TSn , where n is a odd number. 

Claim: Triangular Snake Graph TSn is prime graceful labeling for 3 n<11. 

Triangular Snake Graph TSn has n vertices. Edges in the Triangular Snake Graph depends on the number 

of vertices in that graph. 

From Lemma 3.8, the cardinality of the edges of Triangular Snake Graph  TSn is 

E  = 




==

===+=+

33

2,1,0&3,2,1,32)2(

iwhereinif

mjiwherejinifmi

 

Let us consider the maps and   defined as before 

where k=min{2n,2(i(2+m))} if n=i+2j here i=3, j=1,2,3 & m=0,1,2 

or    k=min{2n,2(3)} 

 k=2n 

The vertices of the Triangular Snake Graph TSn are labeled with distinct number from 1,2,…,k in such a 

way that labeling of every pair of adjacent vertices has the GCD 1& also assign the edge labels  (1,2,…,k-

1) in the following way, 

i.e) ( )yx vv − = ( ) ( )yx vv  −   where x y & x,y=1,2,…,k such that labeling of edges are distinct.If 

the graph satisfies these condition, then graph is said to be prime graceful labeling.Check this condition 

for Triangular Snake Graph TSn for 3 n<11, where n is odd in the following four cases. 

Case (i): n=3 

In this case, Triangular Snake Graph TS3 satisfies the above conditions. 

Prime Graceful Labeling for Triangular Snake Graph TS3 is 

                              5 

                      4              3 

 

 1             1              2                                                                   
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Case (ii): n=5 

In this case, Triangular Snake Graph TS5 satisfies the above conditions. 

    Prime Graceful Labeling for Triangular Snake Graph TS5 is 

                 5                   8 

      3         4   7           5            

 

      2        1         1        2        3 

 Case (iii): n=7 

 In this case, Triangular Snake Graph TS7 satisfies the above conditions. 

    Prime Graceful Labeling for Triangular Snake Graph  TS7 is 

                 13                3                11 

   7          12  2         11   3        4   

 

    6         5       1         13         14      9         5   

 

Case (iv): n=9 

In this case, Triangular Snake Graph TS9 satisfies the above conditions. 

    Prime Graceful Labeling for Triangular Snake Graph TS9 is 

                  16                11                13                 15 

  9      15 10        7        5        4 2         11 

 

    7         6        1         17     18    117         13       4   

Hence the theorem. 

Theorem 3.10 

If the Triangular Snake Graph TSn with n 11 & k=4n where n is odd number then it is prime graceful 

labeling. 
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Proof 

Assume that the Triangular Snake Graph TSn with n 11 & k=4n where n is odd number. 

The proof byMathematical Induction Method. 

Case (i) n=11 

Since k=4n, define a map and   as before here k=min{4n,4(i(2+m))} if n=i+2j here i=3, j=4,5,… & 

m=3,4,… .    k=4n 

The vertices of  theconsidered graph TS11 are labeled with distinct number from 1,2,…,44 in such a way 

that labeling of every pair of adjacent vertices has the GCD 1& also assign the edge labels (1,2,…,43) in 

the following way, 

i.e) ( )yx vv − = ( ) ( )yx vv  −   where x  y & x,y=1,2,…,44 such that labeling of edges are 

distinct. 

The Triangular Snake Graph of TS11 is 

           11                 21                 9                  26                   19 

 

       4    10      20 2335      34       17   9     2          16 

 7      6 1      43        44      1         43     26        17      14         3 

 The Triangular Snake Graph TS11 satisfies the above condition. 

Hence the Triangular Snake Graph TS11 is Prime Graceful Labeling. 

Assume the theorem satisfies for n=h , where h is some positive integer and prove this result for n=h+2 

Since k=4n, Let us consider the maps and   defined as before 

here k=min{4h+8,4(i(2+m))} if n=i+2j here i=3, j=4,5,… & m=3,4,….    then k=4h+8 

The vertices of  the Triangular Snake Graph TSh+2 are labeled with distinct number from 1,2,…,4h+8 in 

such a way that labeling of every pair of adjacent vertices has the GCD 1& also assign the edge labels 

(1,2,…,4h+7) such that labeling of edges are distinct. 

 The Triangular Snake Graph TSh+2satisfies the above condition. 

Hence the Triangular Snake Graph TSh+2is Prime Graceful Labeling. 

Thus the Triangular Snake Graph TSn with n 11 & k=4n where n is odd number is prime graceful 

labeling. 
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4. Conclusion 

The existence of prime graceful labeling for some special graphs such as Pan Graph, Helm Graph & 

Triangular snake Graph are provedand generalized the cardinality ofedges of Triangular snake Graph.It 

can also be extend the Prime graceful labeling further moregraphs. 
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