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Abstract 

In the hydrological cycle, soil moisture is the predominant component for regulating the evapotranspiration, vegetation 

production and runoff. The process of soil moisture is directly essential for farmers involved in sustainable agriculture and 

their related social and economic activities. This soil moisture is the potential soil indicators that aids in determining the 

conditions of early water deficit in the earlier stage, decision making about crop planning, policy making by government, 

food security conditions and uncertainty in crop yield. In specific, the soil moisture prediction of groundnut plant is essential 

as it is the principal crop cultivated by significant number of farmers in the semi-arid regions of Southern India. In this paper, 

Generative Adversarial Networks-based Deep Learning Model with Sailfish Optimization Algorithm (GAN-DLMSOA) for 

predicting the quantity of soil moisture. This GAN-DLMSOA is proposed with the potential characteristics of GAN that aids in 

significant prediction through the comprehensive exploration of exhaustive parameters associated with the problem from 

the dataset to render accurate prediction process. In specific, Sailfish Optimization Algorithm (SOA) is included to perform 

remarkable feature optimization that contributes towards accurate soil moisture prediction. SOA is also used to train the 

GANs with fast convergence degree for accomplishing the task of prediction and facilitate precise results. The data 

perturbation-based stability analysis of the proposed GAN-DLMSOA is also conducted with different weather conditions to 

perceive the stability of the incorporated model. The proposed GAN-DLMSOA confirmed with a mean RMSE value of 0.04065 

and a  maximized accuracy level of 99.66% compared to all the baseline soil prediction schemes.  

2. Introduction 

2.1 Preamble  

 The agricultural industry completely relies on raw agricultural supplies with good quality. The 

yield of crops, vegetables and fruits considered as the principal resource of the agricultural industry 

plays and anchor role in impacting the economy associated with it.  From the viewpoint of ever-

increasing food demand, the total yield of crops is determined as the primary key factor that depicts 

the phenomenal growth of the agricultural industry. In this context, different factors that contributes 

towards predominant agriculture production need to be clearly understood for potential decision 

making that could introduce maximized crop yield. The two significant associated with agriculture 

production are genetic factors and environment factors. The genetic factors determine the growth 

and productivity of the crops in the presence of some specific genes that inculcate maximized crop 

yield. On the other hand, environmental features represent the role of radiant energy, moisture, and 

temperature with its influence over the crop production. In specific, soil moisture pertaining to 

environmental factor is identified as a potential factor that is highly essential for healthy growth of 

crops that results in maximized yield. Soil moisture improves the crops’ probability of fixing large 

amount of natural nutrients that in turn introduces its maximized growth. Inadequate amount of soil 
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moisture negatively impacts the cells growth and results in growth reduction of crops during 

cultivation. However, the growth of crops is also impacted at some specific life stages when the soil 

moisture is high than the required level. Further, the soil moisture necessitated by each crop for 

achieving their growth is also different depending on their variety, season, and geographical location 

in which it is cultivated. Moreover, soil moisture referred as one of the core factors in hydrological 

cycles and agricultural production need to be precisely predicted to achieve optimal management and 

rational use of water resources. Thus, accurate prediction of soil moisture is essential for improving 

the agricultural productions. However, the prediction of soil moisture necessitates the extraction of 

complex meteorological and structural characteristics which is identified to be a Herculean task. 

Further the design and development of an ideal mathematical model for predicting soil moisture is 

highly difficult. Furthermore, the majority of the existing soil moisture prediction models possesses 

the limitations of prediction performance, multi-feature processing capability, generalization, and 

prediction accuracy. Thus, these limitations of the existing soil moisture prediction techniques need 

to be improved through the employment of a suitable and reliable deep learning model to the 

significant level to achieve maximum prediction accuracy. 

2.2 Motivation  

In general, mathematical model developed for predicting soil moisture need to measure physical 

quantities that could be possibly derived from the environment and must derive formulas to depict 

the actual association between the involved parameters. In this context, methods of empirical 

modeling have evolved as the predominant development model that has the potentiality of extracting 

contextual-aware physical quantities related to soil moisture, due to the advancement in computer 

modelling. This empirical model generally used to select a right model, calibrate the physical quantities 

through the selected model and validate it to verify its significance in soil moisture prediction. These 

models need to measure relevant data that comprises of predetermined input parameters and the 

required output parameters which need to be modelled. In specific, input parameters are selected by 

experience with the fact that a at least a minimum degree of correlation need to be maintained 

between them. Majority of the core soil moisture prediction schemes contributed to the literature 

mainly utilized neural networks, linear regression, machine learning and empirical formulas for the 

construction of prediction models. At this juncture, deep learning-based soil moisture prediction 

models is determined to be more potent and reliable in achieving prediction accuracy.   

 The rapid development of artificial intelligence from the past decades innovated the option 

of utilizing a potential deep learning models that possesses the merits of multiple hidden layer 

structure to enhance multiple feature data and big data fitting capability with improved classification 

degree. The deep learning models are identified to include strong computing capability on par with 

the classical neural networks and machine learning models. Moreover, the success of deep learning 

in the fields of stock price predictions, search engines and image recognition motivated the option of 

utilizing its benefits towards the process of soil moisture prediction. This deep learning models include 

the potentiality of handling the extremely complex and non-linear characteristics of soil parameters 

that could be feasibly extracted from a specific region of interest. It is also potent in overcoming the 

issues of lower prediction accuracy, Thus, deep learning model-based soil moisture prediction 

approach that aids in constructing and optimizing the features of the soil with its powerful data 

processing capabilities which can step towards the achievement of precise soil moisture prediction is 

essential.  
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2.3 Related Work  

Regression Network-based deep learning scheme was proposed for accurate prediction of soil 

moisture by handling the problem of multiple feature processing capability, generation, and improved 

prediction performance [11]. This RN-based deep learning model considered the area of Beijing as the 

object of research with the capability of big data fitting that aided in constructing a ideal prediction 

model. It adopted Taylor diagram for determining the predictive variables that helped in selecting the 

parameters of meteorology to facilitate the estimation of weights during moisture prediction. It 

played an anchor role in clarifying the associated between features considered for soil moisture 

prediction. It also investigated the time series related to the predictive variables during the integration 

of dataset. The results of RNDLM confirmed better input characteristics with maximized accuracy due 

to its inherent generalization capability and good data fitting potentiality. A Dynamic Neural Network-

based soil moisture prediction model was proposed by generation and training of one day ahead to 

enhance degree of accuracy [12]. This prediction model included the quantification parameters of 

climatic essentialities, past soil moisture content and volumetric soil moisture.  This model evaluation 

was performed in most of sites based on the field data whose value of 𝑅2 is greater than 0.94. It was 

determined to improve the possibility of generating soil moisture prediction with robustness 

independent to the data associated with the sites that are used for model training.  The simulation of 

this predictive model is conducted using AQUACROP to determine the level of soil moisture required 

for growing potato. The results of this model confirmed 20-46% improvement in water saving on par 

with the other rule-based systems.  

Temporal Graphs-based Soil Moisture Prediction (TGSMP) scheme was proposed with the 

merits of semi-supervised learning for preventing the limitations of the conventional approaches to 

improve the degree of accuracy [13].  This temporal graph approach used dynamic graph neural 

network for establishing the dependency between the associated locations on a region considered for 

predicting soil moisture. It is the first soil moisture prediction approach that utilized temporal graphs 

since this category of graph modelling was utilized in the field of information and social networks. It 

adopted dynamic GNN-based t-problem of graph structure to derive the process of end-to-end 

learning that predicts soil moisture over a region in the entire time duration. It also updated the 

structure of graph periodically depending on the parameters that could be contextually derived from 

a specific region of study. The results of this TGSMP confirmed better input characteristics with 

maximized accuracy. An integrated machine learning techniques-based soil moisture prediction 

strategy was proposed with Naïve Bayes, PCA, SVM and linear regression to minimize average RMSE 

independent to the parameters considered for prediction [14]. This integrated machine learning 

approach was tested over the datasets extracted from thirteen districts of West Bengal, India in which 

the plants of cauliflower, paddy, mustard, and potato are cultivated. The performance of this 

integrated machine learning strategy confirmed excellent F1-Score, Accuracy and minimized RMSE 

compared to the existing approaches.  

An integrated KNN, SVM and Wenner’s four electrodes method-based soil prediction 

approach was proposed with the measurement of electrical resistivity which depends on the water 

retaining capability in the clay and clayey slit regions [15]. It attained soil moisture prediction using 

dataset that comprised of 162 sample points from which 11 points and 151 points is used for testing 

and training, respectively. It included the merits of KNN for clustering only the predominant features 
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that helps in better prediction process. The results also confirmed its potential in minimizing the MAD 

and MAE, compared to the baseline used for analysis. An enhanced deep learning model based on 

improved SVM was proposed for evaluating the quality of meteorological factors and observing the 

complex soil feature to estimate the degree of moisture [16]. The input to this model was the collected 

real time samples determined from the local area sensor network used for investigation. It was 

proposed with the ability of big data fitting that aids in better prediction of soil quality. It measured 

the soil quality depending on the appropriate factors of weight. The comprehensive experimental 

analysis of this improved SVM model confirmed better processing time, accuracy and precision, 

compared to the compared deep learning models considered for investigation. . 

A Support Vector Machine-based soil prediction scheme was proposed in [17] to facilitate the 

water level in the dry sub-humid tropics with maximized accuracy. This SVMSPS was proposed for 

improve the performance offered by the multiple regression method. It facilitated prediction using 

soil physicochemical properties with the dataset comprising of 296 samples. It was proposed with the 

capability to accurately estimate the moisture content with respect to the parameters of coefficients 

of determination and RMSE. It included the merits of linear kernel during the process of calibration to 

improve their capability towards generalization and predictive performance. A Long Short-Term 

Memory (LSTM)-based soil moisture prediction scheme was proposed to extrapolate the space and 

time dynamics of soil moisture [18] facilitated temporal dynamics in a predominant manner. It was 

proposed in such a way that it could be applied for applications that necessitates time-varying soil 

moisture with respect to anomaly detection and memory analyses. It was proposed with the capability 

of deriving temporal characteristics of features that helps in accurate estimation of water content in 

the soil over the period. The results of this LSTM model confirmed better exploration of features and 

minimized the processing time compared to the competitive approaches used for evaluation. 

 

2.4 Extract of the Literature  

 The shortcomings of the existing state-of-the art soil moisture prediction schemes contributed 

to the literature over the recent decade is listed as follows. 

i) Majority of the existing soil prediction approaches utilized only empirical methods which 

were not capable in handling the derivation of extracted automatic features from the 

dataset. 

ii) Most of the existing deep learning approaches were not able to sustain generalization, 

prediction performance and accuracy as per the requirement, thereby possessing a room 

of improvement. 

iii) The existing deep learning approaches used complete set of all parameters from which 

some of the parameters may be not potent in a specific context. 

iv) The degree of mean RMSE and best RMSE attained by the existing deep learning-based 

soil moisture prediction approaches also have a room of improvement.  

Based on the above-mentioned shortcomings, It is decided to formulate a Generative 

Adversarial Networks-based Deep Learning Model with Sailfish Optimization Algorithm (GAN-

DLMSOA) to facilitate accurate estimation of soil moisture required for cultivating groundnut plants. 
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2.5 Contributions of the work  

The major contributions of the proposed Adversarial Networks-based Deep Learning Model 

with Sailfish Optimization Algorithm (GAN-DLMSOA) is listed as follows:  

i) It is proposed for predicting the degree of soil moisture which is required for better 

cultivation of groundnut plants in the district of Villupuram, Tamilnadu, India.  

ii) It incorporated the significant merits of GAN to perform reliable and automatic 

extraction of features that aids in better prediction of soil moisture level.  

iii) It is proposed for handling the limitations of prediction performance, multi-feature 

processing capability, generalization, and prediction accuracy that are inherent with 

the existing methods of prediction.  

iv) It particularly utilizes Sailfish Optimization Algorithm (SOA) for optimizing the features 

and parameters that concentrates towards the attainment of accurate soil moisture 

prediction.  

v) It further adopted SOA to train the GANs such that it can facilitate reliable and rapid 

convergence degree for accomplishing the task of prediction and facilitate precise 

results.  

vi) Experiments of the proposed GAN-DLMSOA-based soil moisture prediction scheme is 

conducted in terms of performance metrics that include accuracy, average RMSE, best 

RMSE, MAE and MAD to evaluate its predominance over the benchmarked schemes 

used for analysis.  

vii) The statistical and stability analysis using data perturbation is also conducted with 

different weather conditions to perceive the stability of the utilized deep learning 

model.  

The remaining section of the paper is structured as follows. Section 2 presents the 

comprehensive review of the existing machine learning and deep learning-based soil prediction 

approaches contributed to the literature over the recent years. Section 3 depicts the detailed view of 

the proposed GAN-DLMSOA-based soil moisture prediction scheme with the role of GAN and feature 

optimization approach through sailfish optimization algorithm with suitable justifications. Section 4 

demonstrates the experimental results and discussions of the proposed GAN-DLMSOA-based soil 

moisture prediction scheme with respect to the performance metrics of accuracy, average RMSE, best 

RMSE, MAE and MAD on par with the benchmarked schemes used for investigation.  

 

3. Proposed Generative Adversarial Networks-based Deep Learning Model with Sailfish 

Optimization Algorithm (GAN-DLMSOA)-based soil moisture prediction  

The proposed Generative Adversarial Networks-based Deep Learning Model with Sailfish 

Optimization Algorithm (GAN-DLMSOA) is proposed for predicting the available quantity of soil 

moisture which is essential for attaining sustainable agriculture. This GAN-DLMSOA adopted the 

significant parameters of relative humidity, air temperature and soil temperature into account during 

the process of precise soil prediction as depicted in Figure 1. 
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Figure 1: Flow diagram of the proposed GAN-DLMSOA-based soil prediction  

 It utilized the merits of GAN-based predictive models to realize the non-linear associated that 

exists between the soil moisture and the above-mentioned significant parameters. GAN is an approach 

for generating convolutional neural networks like generative models through the methods of deep 

learning. The generative modelling in machine learning refers to the task of unsupervised learning that 

aids in automatic learning and discovery of patterns or regularities form the input data. This generative 

model has the capability of generating or identifying new examples of output that could be plausibly 

derived from the original input dataset. GANs represents the intelligent strategy used for training the 

generative model through the process of formulating the problem as a supervised learning problem 

through the inclusion of two sub models, viz., i) generator model and ii) discriminator model. The 

generator model is responsible for generating new potential instances of examples, while the 

discriminator model plays an anchor role in the process of classifying examples as genuine or fake 

from the real or generated domain.   

 

Deep GAN Network architecture used for soil moisture prediction  

 The deep GAN network architecture considered for soil prediction comprises of four main 

entities that includes encoder network (𝐸𝑁𝑒𝑡), decoder or generator network (𝐺𝑁𝑒𝑡), fusion of external 

factors (𝐹𝑒𝑥𝑡), and discriminator network (𝐷𝑁𝑒𝑡). The encoder network 𝐸𝑁𝑒𝑡 inherits a probabilistic 

encoder which can encode the data space (𝑥𝐼𝑛𝑝𝑢𝑡 ), into its latent code (𝑥𝐿𝐶 ). This inference network 

is responsible for deriving the output parameters to the distribution 𝐷𝑝(𝑥𝐿𝐶 |𝑥𝐼𝑛𝑝𝑢𝑡 ). On the other 

hand, the decoder or generator network (𝐺𝑁𝑒𝑡) possesses a probabilistic decoder which is capable for 

learning the features that are possibly derived from the context of application to learn and reconstruct 

the input space 𝑥𝐼𝑛𝑝𝑢𝑡 from the available representation 𝑥𝐿𝐶 . The output parameters determined 
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from the generative network is provided to the likelihood distribution 𝑀𝐿𝐹𝑛(𝑥𝐿𝐶 |𝑥𝐼𝑛𝑝𝑢𝑡 ).. Then, the 

Adversial process is employed for training the network through which the decoder network acquires 

knowledge to approximate the real data distribution in the problem space. The discriminative network 

𝐷𝑁𝑒𝑡  helps in discriminating or differentiating between samples that are feasibly derived from the real 

samples and distributions that are generated through. It further possessed the capability of jointly 

discriminating the latent space to attain better stability in training and learning. This DGAN 

architecture during the training process uses the method of reconstruction loss that could be possibly 

estimated between 𝐷𝑝(𝑥𝐿𝐶 |𝑥𝐼𝑛𝑝𝑢𝑡 ) and 𝑀𝐿𝐹𝑛(𝑥𝐿𝐶 |𝑥𝐼𝑛𝑝𝑢𝑡 ). Moreover, it is useful in computing the 

Adversial loss of 𝐺𝑁𝑒𝑡 and 𝐷𝑁𝑒𝑡 during the backpropagation process. It also possessed a facility of a 

generic fusion network that contextually integrated external parameters determined from the 

different fields with the data. This data fusion entity is given as input to 𝐸𝑁𝑒𝑡 and the generated latent 

code (𝑥𝐿𝐶 ) with respect to suitable external factors (𝐹𝑒𝑥𝑡) is integrated with the automatically 

extracted features during the prediction process.  

In this DGAN predictive model, 𝐸𝑁𝑒𝑡, 𝐺𝑁𝑒𝑡 and 𝐷𝑁𝑒𝑡 is developed based on the stacks of 3 

dimensional ConvNet elements and Convolutional LSTM. The Convolutional LSTM neural network is 

potent in capturing the trends of spatio-temporal map sequences over a long term. It possesses the 

structures of convolution in the state-to-state and input-to-state transitions. On the other hand, 3D 

ConvNet aids in capturing the dependencies of local spatiality. It furthermore incorporates the 

capability of modelling the data correlations with the characteristics of cross temporality. It 

furthermore can better capture the data volume fluctuations and enhance the overall generalization 

potentiality of the model in the short term. This potential of 3D ConvNet is made possible only by 

establishing a sustained relationship between the neighbouring input data points that shares weights 

across different input and spatial temporal locality in the representations of features.   

Role of encoder and generator network  

 The main role of encode and generator network is to concentrate on the process of processing 

the real time input data through the employment of multiple stacks of 3D ConvNet and ConvLSTM 

followed by Multi-Layer Perceptron (MLP) for the purpose of generating a condensed vector of 

features represented through Equation (1) 

𝑉𝐹(𝑥) = 𝑀𝐿𝑃 (𝐶𝑜𝑛𝑣𝑁𝑒𝑡−3𝐷 (…… . , 𝐶𝑜𝑛𝑣𝐿𝑆𝑇𝑀(𝑥𝐼𝑛𝑝𝑢𝑡 )))                                              (1) 

               = 𝑀𝐿𝑃 (𝐶𝑜𝑛𝑣𝑁𝑒𝑡−3𝐷 (𝐶𝑜𝑛𝑣𝐿𝑆𝑇𝑀
𝐷 (𝑥𝐼𝑛𝑝𝑢𝑡 )))                                               

Where, 𝑥𝐼𝑛𝑝𝑢𝑡 represents the real data input and as the extracted feature factor 𝑉𝐹(𝑥) related 

to the input 𝑥𝐼𝑛𝑝𝑢𝑡 with ‘𝐷’ as the number of layers in the ConvLSTM. Then, a method of variational 

Bayesian mechanism is adopted with the assumption of multivariate Gaussian variable and the 

function of variational lower threshold. This estimation of thresholds aids in computing the mean and 

variance associated with the data input distribution in an explicit manner as presented in Equation (2) 

𝑉𝐹(𝑥)(𝑟) = 𝛼 + 𝛽 ∙ 𝛾, with 𝛾~𝑁(0,1)                                                                                      (2) 

Where, 𝛾 is considered as the auxiliary random variable that range between 0 and 1 under the 

independence with ∙ as the element-wise product operation. In particular, the method of Kullback-

Leibler (KL) divergence method is utilized as the regularization term for preventing maximum degree 
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of the possible deviation between 𝐷𝑝(𝑥𝐿𝐶 |𝑥𝐼𝑛𝑝𝑢𝑡 ) and 𝑀𝐿𝐹𝑛(𝑥𝐿𝐶 |𝑥𝐼𝑛𝑝𝑢𝑡 ), respectively. The similar 

kind of process is introduced for the complete set of external factors (𝐹𝑒𝑥𝑡) to include their impact 

into the model of prediction. Further, the module of feature extraction is designed with the similar 

stack of 3D ConvNet and ConvLSTM followed by MLP. Then the auxiliary feature vector with the 

assumptions of Gaussian data distribution is used for learning as represented as 𝑉𝐴𝑢𝑥 (𝑥)(𝑟). Finally, 

the two-feature vector such as 𝑉𝐹(𝑥)(𝑟)and 𝑉𝐴𝑢𝑥 (𝑥)(𝑟) are concatenated and given as input to the 

decoder network. In other words, the reconstruction of spatio-temporal maps is attained through the 

combined merits of MLP, 3D ConvNet and ConvLSTM in its original size as presented in Equation (3). 

𝑉𝐹(𝑥)(𝐸𝑁𝑒𝑡) = (〖𝐶𝑜𝑛𝑣〗_(𝑁𝑒𝑡 − 3𝐷) (〖𝐶𝑜𝑛𝑣〗_𝐿𝑆𝑇𝑀 (𝑀𝐿 (𝑃𝑉𝐶𝑎𝑡−𝐹−𝐴𝑢𝑥 (𝑥)(𝑟)))))                                  

(3)  

Where, 𝑉𝐹(𝑥)(𝐸𝑁𝑒𝑡) represents the spatio-temporal maps after reconstruction process. In addition, a 

vector of noise 𝑁𝑉𝑒𝑐𝑡𝑜𝑟 is forwarder to 𝐺𝑁𝑒𝑡 for the purpose of reconstructing spatio-temporal 

maps 𝐹 − 𝑁𝑉𝑒𝑐𝑡𝑜𝑟   

Role of Discriminator network  

 The primary role of discriminator network focusses on checking whether the generated 

spatio-temporal maps is determined from the ground truth or 𝐺𝑁𝑒𝑡. In the D-GAN, the concatenation 

of the latent code with its generated spatio-temporal map is attained to combinedly learn the data 

space and latent code. This concatenation aids in achieving high training stability, better learning, and 

faster convergence. This strategy involved in attaining rapid convergence and better stability is 

represented in Equation (4) 

𝑊𝐹(𝑥)(𝐸𝑁𝑒𝑡) = (𝑉𝐹(𝑥)(𝐸𝑁𝑒𝑡),𝑀𝐿 (𝑃𝑉𝐶𝑎𝑡−𝐹−𝐴𝑢𝑥 (𝑥)(𝑟)))                                               (4)  

Further, the generation of fake and noise feature vectors are generated based on and  

Finally, the similar kind of stacked 3D ConvNet and ConvLSTM layers is used for the implementation 

of the discriminator network represented in Equation (5) 

𝐷𝑁𝑒𝑡 (𝑂𝑢𝑡𝑝𝑢𝑡) = 𝜎 (𝐶𝑜𝑛𝑣𝑁𝑒𝑡−3𝐷 (𝐶𝑜𝑛𝑣𝐿𝑆𝑇𝑀 (𝑊𝐹(𝑥)(𝐸𝑁𝑒𝑡))))                                      (5)    

Need for feature optimization of GAN  

 The features considered for optimizing the performance of GAN is listed as follows.  

i) The potential features that aid in improving the accuracy of GAN need to be identified 

with more efficiency. 

ii) The features need to be detected with robustness and the false positive rate possible 

during prediction process need to be minimized. 

iii) The problem of overfitting which is the major challenge in the implementation of the 

proposed deep learning model need to be handled.   

Primitives of SailFish Optimization Algorithm (SFOA) and its role in feature optimization of GAN 

 The SailFish Optimization Algorithm (SFOA) was proposed based on the group hunting 

behavioral characteristics of sailfish. This SFOA algorithm comprises of two types of population such 
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as sailfish and sardines’ population. In specific, sailfish population is responsible for performing the 

process of intensification to search the neighbourhood region determined to be the best until the 

current iteration. On the other hand, sardines’ population corresponds to the diversification process 

facilitated over the search space.   

3.1 Process of Initialization 

 In the initialization process, the sailfish is analogical to the search agent that explores the 

candidate solutions with the variables of the problem representing the sailfish position in the space 

of search. In particular, the population is generated randomly defined over the solution space. The 

search agents (sailfish) possess the capability of exploring the single, double, triple, and multi-

dimensional space with their associated variable position vectors. The 𝑖𝑡ℎ variable explored by the 𝑘𝑡ℎ 

searching agent in an 𝑑 −dimensional search space represented through the current position 

𝑆𝐹(𝑖,𝑑) with 1 ≤ 𝑖 ≤ 𝑛  is defined based on Equation (7) 

𝑆𝐹𝑃𝑜𝑠(𝑖,𝑑) = [

𝑆𝐹𝑃𝑜𝑠(1,1) 𝑆𝐹𝑃𝑜𝑠(1,2) …… 𝑆𝐹𝑃𝑜𝑠(1,𝑑)

𝑆𝐹𝑃𝑜𝑠(2,1) 𝑆𝐹𝑃𝑜𝑠(2,2) … . . 𝑆𝐹𝑃𝑜𝑠(2,𝑑)

…… …… … . . …… .
𝑆𝐹𝑃𝑜𝑠(𝑛,1) 𝑆𝐹𝑃𝑜𝑠(𝑛,2) … . . 𝑆𝐹𝑃𝑜𝑠(𝑛,𝑑)

]                                          (7) 

The matrix 𝑆𝐹(𝑖,𝑑) representing the candidate solutions that are explored by search agents is 

identified and saved in the memory. This memorization of positions associated with the candidate 

solution represents the complete set of variables that represents possible dimensions of the complete 

set of solutions during the optimization process. The fitness associated with search agent (sailfish) is 

determined based on Equation (8) 

          𝐹𝑖𝑡𝐹𝑛(𝑆𝐹(𝑖)) = 𝐹𝑖𝑡𝐹𝑛(𝑆𝐹(1), 𝑆𝐹(2), …… , 𝑆𝐹(𝑛)  )                                                               (8)  

In this context, the matrix exhibiting the fitness value associated with the computations of 

fitness value for all the search agents(𝐹𝑖𝑡𝐹𝑛(𝑆𝐹𝑃𝑜𝑠(𝑖,𝑑))) is determined based on Equation (9)  

𝐹𝑖𝑡𝐹𝑛(𝑆𝐹𝑃𝑜𝑠(𝑖,𝑑)) =

[
 
 
 
𝐹𝑖𝑡𝐹𝑛(𝑆𝐹(1,1), 𝑆𝐹(1,2), …… , 𝑆𝐹(1,𝑑)  )

𝐹𝑖𝑡𝐹𝑛(𝑆𝐹(2,1), 𝑆𝐹(2,2), …… , 𝑆𝐹(2,𝑑)  )
……………… . .

𝐹𝑖𝑡𝐹𝑛(𝑆𝐹(𝑛,1), 𝑆𝐹(𝑛,2), …… , 𝑆𝐹(𝑛,𝑑)  )]
 
 
 
                                                       (9) 

Where 𝑆𝐹𝑃𝑜𝑠(𝑖,𝑑) and ’ 𝑛 ‘represents the value associated with the 𝑑 −dimension and the 

number of search agents (sailfish).  

 In this SFOA algorithm, the population of another search agents (sardines) is introduced, and 

its count is equal to the number of sailfish search agents. The position of this search agents (sardines) 

with its related fitness value is determined based on Equation (10) and (11), respectively.   

𝑆𝐷𝑃𝑜𝑠(𝑖,𝑑) = [

𝑆𝐷𝑃𝑜𝑠(1,1) 𝑆𝐷𝑃𝑜𝑠(1,2) …… 𝑆𝐷𝑃𝑜𝑠(1,𝑑)

𝑆𝐷𝑃𝑜𝑠(2,1) 𝑆𝐷𝑃𝑜𝑠(2,2) … . . 𝑆𝐷𝑃𝑜𝑠(2,𝑑)

…… …… … . . …… .
𝑆𝐷𝑃𝑜𝑠(𝑛,1) 𝑆𝐷𝑃𝑜𝑠(𝑛,2) … . . 𝑆𝐷𝑃𝑜𝑠(𝑛,𝑑)

]                                               (10) 
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𝐹𝑖𝑡𝐹𝑛(𝑆𝐷𝑃𝑜𝑠(𝑖,𝑑)) =

[
 
 
 
𝐹𝑖𝑡𝐹𝑛(𝑆𝐷(1,1), 𝑆𝐷(1,2), …… , 𝑆𝐷(1,𝑑)  )

𝐹𝑖𝑡𝐹𝑛(𝑆𝐷(2,1), 𝑆𝐷(2,2), …… , 𝑆𝐷(2,𝑑)  )
……………… . .

𝐹𝑖𝑡𝐹𝑛(𝑆𝐷(𝑛,1), 𝑆𝐷(𝑛,2), …… , 𝑆𝐷(𝑛,𝑑)  )]
 
 
 
                                                    (11) 

Where, 𝐹𝑖𝑡𝐹𝑛(𝑆𝐷𝑃𝑜𝑠(𝑖,𝑑)) represents the objective function determined for identifying the 

fitness value based on the application of each search agent (sardines). Further,  

Mechanism of Elitism 

  The mechanism of elitism is utilized in SFOA for preventing the superior solutions from being 

lost during the process of search agents’ updating process. In specific, the position of solutions lost 

during each updating process may be weaker than the new solutions that are determined before the 

application of the elitism phenomenon. In specific, elitism plays an anchor role in copying or 

maintaining the fittest solution from one generation to the successive generation. In SFOA, the search 

agent (sailfish) determined so far as the best solution is termed as an elite solution. This elite solution 

is essential for accelerating (applying exploitation) over the population of search agents (sardines) to 

determine better local best solution.   

Method of attack alternation  

 In this method of attack alternation, the search agents facilitate the phase of exploration and 

employs the principle of determining the promising solutions that needs significant refinement. This 

search agent possesses the capability of performing the complete process of exploration depending 

on the shrinking circle factor through the exhaustive number of parameters that could help in the 

process of global search. The updated search agent (sailfish) based on the method of attack 

alternation is determined in the 𝑖𝑡ℎ iteration based on Equation (12) 

𝑆𝐹_((𝑖) ) (𝑁𝑒𝑤) = 𝑆𝐹(𝑖)(𝐸𝑙𝑡) − 𝛼_𝑖 × (〖𝑟𝑛𝑑〗_((0,1)) ) × ((𝑆𝐹_((𝑖)) (𝐸𝑙𝑡) +〖𝑆𝐷〗

_((𝑖)) (𝐼𝑛𝑗))/2) − 𝑆𝐹_((𝑖)) (𝑂𝑙𝑑)                 (12)  

Where, 𝑆𝐹(𝑖)(𝐸𝑙𝑡) and 𝑆𝐷(𝑖)(𝐼𝑛𝑗) represents the elite sailfish and injured (exploited) sardine solution 

as determined until the current iteration. Further, 𝛼𝑖 and 𝑟𝑛𝑑(0,1) depicts the influential coefficient 

and random number that ranges between 0 and 1. Furthermore, the influential factor  𝛼𝑖 is 

determined based on Equation (13)  

𝛼𝑖 = (2 × 𝑟𝑛𝑑(0,1) × 𝐷𝑒𝑛𝑠𝑡𝑃) − 𝐷𝑒𝑛𝑠𝑡𝑃                                                                                                (13)  

Where, 𝐷𝑒𝑛𝑠𝑡𝑃 represents the number of candidate solutions that are exploited during the search of 

optimal features in the space. This adaptive parameter ‘𝐷𝑒𝑛𝑠𝑡𝑃’ is determined based on Equation (14)  

𝐷𝑒𝑛𝑠𝑡𝑃 = 1 −
𝑆𝐹𝐶𝑛𝑡 

𝑆𝐹𝐶𝑛𝑡+𝑆𝐷𝐶𝑛𝑡
                                                                                                                      (14)  

Where, 𝑆𝐹𝐶𝑛𝑡 and 𝑆𝐷𝐶𝑛𝑡 depicts the number of search agents (sailfish) and search agents 

(sardines) utilized for performing the process of exploration and exploitation. Moreover, the value of 

𝑆𝐷𝐶𝑛𝑡 need to be always greater than the value of 𝑆𝐹𝐶𝑛𝑡 .  

Prey hunting and catching phase  
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 This phase of hunting and catching associated with SFOA is responsible for updating the 

position of the solution with respect to sardine (search agent) depending on the current best local 

solution and attack power identified in each iteration based on Equation (15)  

〖𝑆𝐷〗_((𝑖) ) (𝑁𝑒𝑤) = (〖𝑟𝑛𝑑〗_((0,1)) ) × (〖𝑆𝐹〗_((𝑖) ) (𝐸𝑙𝑡) −〖𝑆𝐷〗_((𝑖) ) (𝑂𝑙𝑑) +

𝑃_𝑎𝑡𝑡𝑘 )                                           (15) 

At this juncture, 𝑃𝑎𝑡𝑡𝑘 represents the power of attack (exploitation) introduced by search 

agents (sailfish) in each individual iteration as determined in Equation (16) 

𝑃𝑎𝑡𝑡𝑘 = 𝑃𝑎𝑡𝑡𝑘(𝐶𝑜𝑒𝑓𝑓) × (1 − (2 × 𝐼𝑡𝑒𝑟𝐶𝑢𝑟𝑟)) × 𝛽                                                      (16)  

Where, 𝑃𝑎𝑡𝑡𝑘(𝐶𝑜𝑒𝑓𝑓)and 𝛽 highlights the coefficients whose values decreases linearly from to 0 

depending on the value of the power attack. This use of coefficients clearly portray that the attack 

power reduces depending on the time incurred for exploration and exploitation, which facilitates the 

phenomenal support towards the search agents’ convergence. The search agent (sardines) depending 

on the parameter of 𝑃𝑎𝑡𝑡𝑘(𝐶𝑜𝑒𝑓𝑓) is responsible for updating the global and local best solution based 

on Equation (17) and (18) 

𝜔 = 𝑆𝐷𝐶𝑛𝑡 × 𝑃𝑎𝑡𝑡𝑘(𝐶𝑜𝑒𝑓𝑓)                                                                                                       (17) 

𝛿 = 𝑉𝑎𝑟𝐶𝑛𝑡 × 𝑃_𝑎𝑡𝑡𝑘 (𝐶𝑜𝑒𝑓𝑓)                                                                                                       (18)  

Where, 𝑆𝐷𝐶𝑛𝑡 and 𝑉𝑎𝑟𝐶𝑛𝑡specifies the number of search agent (sardines) and number of variables 

considered in each iteration during the implementation of the utilized SFOA algorithm. When the 

value of 𝑃𝑎𝑡𝑡𝑘 is less than 0.5, the values of 𝜔 and 𝛿 associated with search agent (sardine) is updated. 

On the other hand, the solutions determined by the complete set of search agent (sardine) is updated 

when the value of 𝑃𝑎𝑡𝑡𝑘 is greater than and equal to 0.5. In particular, the parameters of and used for 

introducing random behavior into the process of feature optimization and prevent the issue of 

stagnation in determining local optima during the execution of all iterations.  

 As mentioned, the feature optimization process of GAN is achieved through the above-

mentioned SFOA algorithm for improving the accuracy involved in soil moisture prediction. Once the 

feature optimization process is attained through SFOA, then adversarial losses are used for 

establishing the balance between 𝐺𝑁𝑒𝑡 and 𝐷𝑁𝑒𝑡 during the adversarial training process.  In the 

context, the adversarial loss in the DGAN is determined based on Equation (19)  

𝐷_𝐺𝐴𝑁^(𝐴 − 𝐿𝑜𝑠𝑠) = ‖(𝐷𝑅𝑒𝑎𝑙(𝑦) − 1)‖^2 + ‖𝐷_𝐸𝑥𝑝𝑡 (𝑦) − 1‖^2 + ‖𝐷_𝐸𝑟𝑟𝑜𝑟 (𝑦) − 1‖^2                                      

(19)  

In this case, the method of least function is employed rather than binary cross entropy method for 

improving the performance of the employed DGAN to determine the difference between the sample 

data points considered for prediction process. Finally, the complete objective of DGAN-based soil 

moisture prediction is determined based on Equation (20) 

𝑇𝑜𝑡𝑎𝑙 − 𝐷𝐺𝐴𝑁
𝐴−𝐿𝑜𝑠𝑠 = 𝐷𝐺𝐴𝑁

𝐴−𝐿𝑜𝑠𝑠(𝐸𝑁𝑒𝑡) + 𝐷𝐺𝐴𝑁
𝐴−𝐿𝑜𝑠𝑠(𝐷𝑁𝑒𝑡) + 𝐷𝐺𝐴𝑁

𝐴−𝐿𝑜𝑠𝑠(𝐹𝑒𝑥𝑡)                                     (20)  

Where, 𝐷𝐺𝐴𝑁
𝐴−𝐿𝑜𝑠𝑠(𝐸𝑁𝑒𝑡), 𝐷𝐺𝐴𝑁

𝐴−𝐿𝑜𝑠𝑠(𝐷𝑁𝑒𝑡) and 𝐷𝐺𝐴𝑁
𝐴−𝐿𝑜𝑠𝑠(𝐹𝑒𝑥𝑡) represents the losses with respect 

to  encoder network (𝐸𝑁𝑒𝑡), fusion of external factors (𝐹𝑒𝑥𝑡), and discriminator network (𝐷𝑁𝑒𝑡), 
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respectively. This value of 𝑇𝑜𝑡𝑎𝑙 − 𝐷𝐺𝐴𝑁
𝐴−𝐿𝑜𝑠𝑠 is highly minimized during SFOA optimization for achieving 

predominant accuracy in soil moisture prediction process.  

4. Simulation Results and Discussion  

 The simulation experiments of the proposed GAN-DLMSOA scheme and the benchmarked 

SVMSPSM, TGSMO, RNDLM and AQUACrop schemes are conducted with the Villupuram district soil 

moisture dataset. This dataset considered for the current investigation is publicly available. The 

datasets associated with the years of 2018 and 2019 is considered for the experimental investigation. 

These experiments are conducted for 10 iterations with respect to each of the algorithms with the 

validation of 10-fold cross utilized for each of the analysis. The performance measures such as 

precision, recall score, F1-Measure, ROC and Accuracy along with the error measure RMSE, MAD, MAE 

and R2 are calculated and a comparison over the baseline models is derived for the proposed GAN-

DLMSOA proved through the graphical comparisons. This experimental analysis is conducted using an 

8GB Intel i3 processor machine. 

 The process of training involved in the proposed GAN-DLMSOA scheme is achieved based on 

the data (Villupuram district soil moisture dataset) determined from the web-enabled geographical 

information server. This GIS server refers to the India Water Resource Information System (India-

WRIS) maintained by the ISRO (Indian Space Research Organization). This India-WRIS plays an anchor 

role as a single-window system for the objective of determining hydrological data such as soil 

temperature and soil moisture, and the meteorological data consisting of rainfall level, air humidity 

and air temperature. The metrological parameters determined for training purpose is determined 

from the Tamilnadu metrological department of Villupuram district over two years from 1st June 2018 

to 15th  June  2020. Thus, data pertaining to 730 days is captured for understanding the dynamics 

existing the full annual cycle. In specific, cosmic ray soil moisture sensors were deployed during the 

entire duration in the regions of analysis for estimating the soil temperature and volumetric soil 

moisture. This cosmic ray soil moisture sensors named Model CRS-1000/B possesses the capability of 

measuring a phenomenal depth of 20 meters and maximized horizontal range of 200 m. Further, 

resampling of the extracted data is attained in a daily basis by feeding the individual data into GAN-

DLMSOA which aids in predicting the volumetric soil content that could exist in the forthcoming days 

on the sites of investigation.  The dataset is divided based on the ratio of 70:30 for preventing the 

problem of network overfitting. Thus, the data of 511 days is used for training and the remaining 219 

days of data is used for testing. This partition of dataset is mainly for validating the potential of the 

proposed GAN-DLMSOA scheme determined based on the posterior temporal dataset estimated 

before the period of training.  

 On the other hand, the model is tested using the dataset of 219 days kept separated from 

each of the sets of training. In particular, the proposed GAN-DLMSOA scheme takes the mean value 

of the preceding climatic variables associated with the preceding three days for the objective of 

assessing the mean volumetric soil moisture for the successive day of investigation.  

 

Consideration of Performance and Error Measures  

 In this section, the performance and error measures considered for evaluating the potential 

of the proposed GAN-DLMSOA scheme is defined as follows.  
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a. Accuracy: It is computed based on the ratio of the complete number of all correct predictions to the 

total number of a sample dataset as represented below. 

                                                    𝐴𝐶𝐶𝑈𝑅𝐴𝐶𝑌 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
              (21) 

The best value of accuracy is 1.0 with the worst being 0.0.  

The compared accuracy of the proposed GAN-DLMSOA Model with the other baseline models is 

shown in the figure 2 

 

                                                                  Figure: 2 

b. Precision: It is computed as the ratio between the number of positive predictions correctly identified 

to the cumulative number of positive predictions as represented below. 

                                                        𝑃𝑅𝐸𝐶𝐼𝑆𝐼𝑂𝑁 =
𝑇𝑃

𝑇𝑃+𝐹𝑝
                      (22) 

The best value of precision is 1.0 with the worst being 0.0.  

The compared precision of the proposed GAN-DLMSOA Model with the other baseline models  is 

shown in figure 3 
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                                                                     Figure:3 

 

c. Recall: 

The recall is defined as the actually predicted true positive values to the overall sum for true predicted 

positive values and false negative values. 

                                                           RECALL =
TP

𝑇𝑃+𝐹𝑁
                         (23) 

Here, TP-True  Positive ; FN- False Negative. 

d.F1-Measure: 

The F1 measure is defined as the harmonic mean of precision and recall 

                                                       𝐹1 = 2 ∗
𝑃𝑅𝐸𝐶𝐼𝑆𝐼𝑂𝑁∗𝑅𝐸𝐶𝐴𝐿𝐿

𝑃𝑅𝐸𝐶𝐼𝑆𝐼𝑂𝑁+𝑅𝐸𝐶𝐴𝐿𝐿
              (24) 

e. Receiver Operating Curve (ROC) 

ROC Curves are used for the process of evaluating the performance of the various baseline models 

with the proposed model, it has a false positive rate on X-axis and True positive rate on Y-axis. 

 

The table 1 has been derived with the calculated performance measures of all the baseline models in 

comparison with the proposed GAN-DLMSOA and Figure:4 depicts its corresponding graphical 

representation of the performance metrics, The comparison clearly concludes that  the proposed 

GAN-DLMSOA has shown a considerable  improvement in all its performance measures.   
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Table 1: Comparison on Performance measures of various baseline models with the proposed GAN-

DLMSOA Model 

 

 

                                                                      Figure:4 

 

Comparison of Error Measures 

RMSE: It is Root of the Mean of the Square of Errors which depicts the square root of the difference 

between the predicted values of the utilized model and the actual values associated with the variable 

of study (soil moisture) determined over the total number of observations.  
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                                           𝑅𝑀𝑆𝐸 = √
𝐴𝐶𝑇𝑉𝑎𝑙−𝑃𝑅𝑉𝑎𝑙

𝑂𝑏𝑠𝑁𝑜
              (25) 

MAE: It is mean of absolute values of the which depicts the difference between the predicted values of 

the utilized model and the actual values associated with the variable of study (soil moisture) 

determined over the total number of observations.  

                                          𝑀𝐴𝐸 =
𝐴𝐶𝑇𝑉𝑎𝑙−𝑃𝑅𝑉𝑎𝑙

𝑂𝑏𝑠𝑁𝑜
                    (26)   

Where, 𝐴𝐶𝑇𝑉𝑎𝑙 and 𝑃𝑅𝑉𝑎𝑙represent the actual value and predicted value as determined by 

the proposed model with 𝑂𝑏𝑠𝑁𝑜 as the total number of observations 

 

MAD: The mean absolute deviation of a dataset is the average distance between each data point and 

the mean. It gives us an idea about the variability in a dataset. 

               MAD =
∑𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑣𝑎𝑙𝑢𝑒𝑠 𝑜𝑓 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑓𝑟𝑜𝑚 𝑐𝑒𝑛𝑡𝑟𝑎𝑙 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 .𝑛𝑜.𝑜𝑓.𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠
   (27) 

The table 2 has been derived with  the calculated error measures comparing with the all the baseline 

models with the proposed GAN-DLMSOA and Figure:5 depicts its corresponding graphical 

representation, The comparison clearly concludes that  the proposed GAN-DLMSOA has shown a 

considerable  defending results in all its error measures too. The calculated Coefficient of 

Determination (R2) Value of the GAN-DLMSOA model ranges to be greater in comparison with all the 

baseline models, which signifies how good the coefficient is actually fit with the training dataset values  

 

Table 2: Comparison of Error measures over various baseline models with the proposed GAN-DLMSOA 

Model 
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Figure:5 

Initially, the prediction efficiency of the proposed GAN-DLMSOA scheme and the 

benchmarked SVMSPSM, TGSMO, RNDLM and AQUACrop schemes are conducted with the Villupuram 

district soil moisture dataset using confusion matrix represented in Table 3, 4, 5, 6 and 7. If the model 

is potent in predicting the moisture with 100% accuracy, then the value of the diagonal elements in 

the confusion matrix should be 3000. Except the confusion matrix presented in Table 1, the values of 

the diagonal elements are either higher or lower than 3000 due to the issue of misclassification. 

However, the value of difference between the predicted and actual value of prediction is 

comparatively realized to be lower with the proposed GAN-DLMSOA scheme, which is significantly an 

improved performance over the compared SVMSPSM, TGSMO, RNDLM and AQUACrop schemes.  

Table 3: Confusion Matrix for depicting the efficiency of the proposed GAN-DLMSOA  
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 Predicted Moisture Level 

 Sample A  Sample B Sample C Sample D Sample E  

Sample A 2995 1 2 0 0 2998 

Sample B 1 2996 2 0 0 2999 

Sample C 0 0 2917 23 1 2941 

Sample D 0 0 56 2904 4 2964 

Sample E 0 0 0 7 3091  3098 

 2996 2997 2977 2934 3096 15000 
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Table 4: Confusion Matrix for depicting the efficiency of the proposed SVMSPSM scheme  
A
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 Predicted Moisture Level 

 Sample A  Sample B Sample C Sample D Sample E  

Sample A 2921 3 5 0 0 2929 

Sample B 3 2936 9 0 0 2948 

Sample C 0 0 2943 29 6 2978 

Sample D 0 0 44 2948 7 2999 

Sample E 0 0 0 158 2988 3146 

 2924 2939 3001 3135 3001 15000 

Table 5: Confusion Matrix for depicting the efficiency of the proposed TGSMO  
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 Predicted Moisture Level 

 Sample A  Sample B Sample C Sample D Sample E  

Sample A 2988 3 6 0 0 2997 

Sample B 2 2965 6 0 0 2973 

Sample C 0 0 2939 31 6 2976 

Sample D 0 0 44 2917 9 2970 

Sample E 0 0 0 7 3077 3084 

 2990 2968 2995 2955 3092 15000 

 

 

Table 6: Confusion Matrix for depicting the efficiency of the proposed RNDLM  
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 Predicted Moisture Level 

 Sample A  Sample B Sample C Sample D Sample E  

Sample A 2922 6 8 0 0 2936 

Sample B 4 2931 6 0 0 2934 

Sample C 0 0 2941 12 5 2958 

Sample D 0 0 31 2896 8 2935 

Sample E 0 0 0 9 3226 3235 

 2926 2937 2987 2917 3239 15000 

 

Table 7: Confusion Matrix for depicting the efficiency of the proposed AQUACrop Scheme   
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  Predicted Moisture Level 

 Sample A  Sample B Sample C Sample D Sample E  

Sample A 2995 1 6 0 0 3002 
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Sample B 1 2996 4 0 0 3001 

Sample C 0 0 2917 23 1 3017 

Sample D 0 0 56 2904 4 2964 

Sample E 0 0 0 7 2995 3202 

 2996 2997 2977 2934 3000 15000 

 

The complete experimental process of the proposed GAN-DLMSOA scheme and the 

benchmarked schemes is achieved in three folds. Initially, the performance of the proposed GAN-

DLMSOA scheme and its benchmarked schemes are compared based on the Performance measures 

which includes (Accuracy, Precision, Recall score,F1-measure and ROC) along with error measures 

(RMSE, MAD and MAE) with respect to Villupuram district soil moisture dataset. Figure 2 and 3 

demonstrates the performance of the proposed GAN-DLMSOA scheme and the benchmarked 

SVMSPSM TGSMO, RNDLM and AQUACrop schemes based on mean accuracy and precision with 

Villupuram district soil moisture dataset. The accuracy and precision guaranteed by the implemented 

proposed GAN-DLMSOA-deep learning architecture was maximal, since the rapidness in deriving 

robustness features that could possibly influence the prediction of soil moisture was potentially 

excellent on par with other deep learning models. Thus, accuracy achieved by the proposed GAN-

DLMSOA scheme is identified to be potentially enhanced by 10.94%, 11.65%, 13.91% and 15.86%, 

better than the baseline SVMSPSM TGSMO, RNDLM and AQUACrop schemes. Moreover, the proposed 

GAN-DLMSOA scheme is also confirmed to improve precision by 11.52%, 13.81%, 15.65% and 16.88%, 

excellent to the baseline schemes used for investigation.  

               

 

Figure 6: Overall performance comparison of the proposed GAN-DLMSOA 

Figure: 4 presents the performance of the proposed GAN-DLMSOA scheme and the 

benchmarked SVMSPSM TGSMO, RNDLM and AQUACrop schemes based on mean RMSE, MAD , MAE 

and Coefficient of Determination(R2) with Villupuram district soil moisture dataset. The RMSE, MAE 

and MAD value of the proposed GAN-DLMSOA scheme is identified to be significantly minimized and 
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R2  value turns to greater on par with the other baseline schemes, since it derives the benefits of SOA 

algorithm in optimizing the features considered for improving the performance of the utilized GAN. 

This is mainly due to the process included in the automatic extraction of features that determines the 

prediction of soil moisture with utmost accuracy and minimal error scores. The figure 6, clearly depicts 

the Overall efficacy of the proposed GAN-DLMSOA scheme over other compared models. 

4.2 Statistical analysis  

 The statistical investigation of the proposed GAN-DLMSOA scheme and the baseline 

SVMSPSM TGSMO, RNDLM and AQUACrop schemes is conducted using Wilcoxon rank test with 5% 

level of significance. In this statistical analysis, the null hypothesis states that “there is no significant 

difference between the mean of different groups”. At the same time, alternative hypothesis states 

that “there is significant difference between the mean of different groups”. At this juncture, the 

threshold considered for the test is determined to be 0.028 depending in the inequality of Bonferroni. 

Table 1 presents the calculated p-values for GAN-DLMSOA Vs SVMSPSM, GAN-DLMSOA Vs TGSMP, 

GAN-DLMSOA Vs RNDLM and GAN-DLMSOA Vs AQUACrop, respectively.  

Table 6: Proposed GAN-DLMSOA-Wilcoxin rank test-p values  

 Algorithms used for Comparison with p values  

 SVMSPSM TGSMP RNDLM AQUACrop 

Proposed GAN-DLMSOA 3.42e-09 2.93e-07 2.46e-08 2.51e-10 

 

 The p-values are determined to be potentially smaller than the value of the threshold as 

mentioned earlier. This clearly proved that in all the cases, the null hypothesis is identified to be 

rejected. Moreover, the results achieved through the application of proposed GAN-DLMSOA scheme 

is not random, thereby identified to be statistically significant.  

5. Conclusion 

In this paper, GAN-DLMSOA was contributed with the merits of D-GAN to facilitate automatic 

extraction of features and parameters with optimized capability of SOA to predict the soil moisture 

level convenient for the cultivation of groundnut plants in the district of Villupuram, Tamilnadu, India. 

It was proposed with the capability of better prediction, multi-feature processing potential, 

generalization, and prediction accuracy, which is a significant improvement over the existing soil 

moisture prediction strategies. It adopted SOA and facilitated features optimization contextually that 

helped in achieving accurate soil moisture prediction. The experimental results of the proposed GAN-

DLMSOA-based soil moisture prediction scheme confirmed better accuracy and precision, on an 

average by 14.82% and 17.63%, compared to the baseline approaches used for comparison. The 

results proved that the average RMSE and best RMSE attained by the proposed GAN-DLMSOA-based 

soil moisture prediction scheme is minimized by 15.12% and 18.65%, superior to the benchmarked 

schemes used for analysis. Moreover, the proposed GAN-DLMSOA-based soil moisture prediction 

scheme minimized MAE and MAD to the maximized level of 23.18% and 25.48%, excellent over the 

benchmarked schemes. In addition, the statistical and stability analysis of the proposed GAN-

DLMSOA-based soil moisture prediction scheme also confirmed its predominance with respect to the 

evaluation done with p-test. The results in confusion matrix confirmed that the value of difference 

between the predicted and actual value of prediction is comparatively realized to  be lower with the 
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proposed GAN-DLMSOA scheme, which is definitely an predominant performance over the compared 

SVMSPSM, TGSMO, RNDLM and AQUACrop schemes. As the part of future research, it is also planned 

to formulate a CNN and GRU-based soil moisture prediction approach and compare it with the 

proposed GAN-DLMSOA scheme to determine the best among the two in terms of generalization and 

prediction accuracy.  
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