

Synthesis, Characterization And Thermal Study Of New Schiff Base Ligand Derived From Thiazole And Its Complexes With [Ni II, Hg II And La III] Type N₂O

Mohammad Hassan Abed¹, Wurood Ali Jaafar², Eman Abdul Wahid Othman³

1/University of Samarra - Computer Center.

2 / Department of Chemistry, College of Education for Pure Science (Ibn Al-Haitham) / University of Baghdad, Iraq.

3/Department of Chemistry, College of Education/ University of Samarra.

Abstract:

In this work, 2-aminobenzothiazole reaction with benzoin in ethanol and drops of 48% HBr to procure the ligand [L] .2 mole of The ligand was refluxed in solvent with the metal ions [Ni⁺² Hg⁺²and La⁺³] salts, using KOH as a base in (2:1) molar ratio to give the complexes. in EtOH to yield new complexes. The structure of synthesized complexes described via FTIR, UV-Visible Spectroscopy, TGA-DSC, Atomic Absorption, chloride content, conductivity and the elemental analysis (CHNS).the proposed geometrical structures for every prepared complexhave been of the octahedral formula.

Key-words: bezoin, 2-aminobenzothiazole, coordinated complexes

Introduction

Benzoin (2-hydroxy-1,2-di(phenyl)ethanone) is an organic compoundwith the formula PhCH(OH)C(O)Ph,it is a hydroxy ketone attached to 2 phenyl groups^(1,2),it appears as off-white crystals, with a light camphor-like odor. Benzoin is synthesized from benzaldehyde in the benzoin condensation. It is chiral and it occurs as a couple of enantiomers: (R)-benzoin and (S)-benzoin.Benzoin is not a constituent of benzoin resin obtained from the benzoin tree(Styrax) or tincture of benzoin. ⁽³⁻⁵⁾. The Thiazole is a versatile heterocycle, which is found in structures of several drugs in use in addition to the anti-cancer agents. The present paperpresents an overview of the recent developments in the thiazole-bearing complexes as anti-cancer agents with a specific focus on their mechanism of action in the cancerous cells⁽⁶⁻¹⁰⁾. The chemical designs, relevant preclinical properties and structure–activity relationships were described in detail. Benzoin is utilized as well on the canker sores in and around the mouth for protecting them and enable them to heal^{(11-15).} The Benzoin is utilized as well for helping to soothe and relieve the minor throat, nose, and airways irritations (such as croup and laryngitis) in the case

of mixing it with the hot water and inhaling the steam. Benzoin is the sap (gum resin) that comes from cuts in the trunk of trees that to the styrax family

Benzoin is used on the skin for ulcers, cracked skin, bed sores (pressure ulcers), and several of the other conditions, however, there aren't any good scientific evidences for supporting those uses. Benzoin is used in small quantities in foods as a flavoring^{(16-18).}

2.Experimental

2.1.Materials: All of the chemicals have been brought from Fluka.

2.2.Arrangement: infrared Spectra recorded on a Shimadzu using potassium bromide disk . Thermal study TGA-DSC were studied and characterized. The C.H.N.S. were performed on an European Elemental .

2.3. Provision of components:

2.3.1.Creation of(E)-2-(benzo[d]thiazol-2-ylimino)-1,2-diphenylethan-1-ol

In a round bottom flask, 2-aminobenzothiazole (0.70g) in (15ml) ethanol and Benzoin (1g) dissolved in (15ml) ethanol and adding drops of 48%HBr, then reflux for 3 hours under nitrogen blanket, (by water bath 80 $^{\circ}$ C and strring) then filtration and recrystallized to produce yellow precipitate ,produce (85%), Melting point=172-174 $^{\circ}$ C, scheme (1).

(E)-2-(benzo[d]thiazol-2-ylimino)-1,2-diphenylethan-1-ol

Scheme (1) synthesis of ligand (L)

2.3.2.Synthesis of Metal Developments [Ni(II), Hg(II) and La (III)] with lig and (L)

The (1:2) component metal and (L) have been synthesized via melting (0.145 g.) (L) in (15ml) of the total solvent, then assorted with solution containing (0.2 g.) metal chloride salts dissolved in the utter solvent (15 mL). The fusion refluxed a dated (3hrs.) on water bath under nitrogen blanket, on the cooling of the contents, the complexes have been divided out. The invention has been filtered, then it was wash away by the solvent and dehydratedby using the rotary, Scheme (2).

 $M= Ni, Hg; A=H_2O$ La; A= Cl

scheme (2) synthesis of complexes.

3. Results and Discussion

3.1. FTIR of compounds

In pattern (1), Compound [L] was produced through the countering of 2-aminobenzothiazole reaction with Benzoin and sodium nitrate in solvent. FT-IR of compound [L] show the presenceclutches at (1677) cm⁻¹ mention to (C=N) and vanishingof 2 absorption groupsat (3444 and 3194cm⁻¹) owed to symmetric and asymmetric extending of (-NH₂) group correspondingly fig.(1). In scheme Synthesis some TMC [Ni(II), Hg(II) and La(III) of this component. All complexes have been synthesized by reaction of 2 mole compound[L] and metal salt in ethanol.FT-IR of complexes [Ni(L)₂] (H₂O), [Hg(L)₂] (H₂O), [La(L)₂]C, fig.(2,3 and 4) displayed the shifting of band at (1679) cm⁻¹due to (C=N) group to higher and shifting of bands at (1068cm⁻¹) that are connected to stretching (C-O) group, at last appearance of bands at (418cm⁻¹-420cm⁻¹) due to (M-O) and at (502-497) cm⁻¹ due to (M-N) confirming the coordination of metal with donor atoms. Table (1) show FT-IR spectrum of compounds⁽¹⁸⁻²¹⁾.

Table (1): The characterist	c infrared ban	ds forcomponents
-----------------------------	----------------	------------------

	Color	M.P.	υ(C=N)	υ(C-O)	υ(C=N)	υ(M-O)	
			imine		in plane		υ (M- N)
L	yellow	102-	1677	1066	1630		
		107					

L+Ni	Light green	124-	1679	1068	1650	418	501
		126					
L+Hg	brown	156-	1679	1068	1614	422	507
		160					
L+La	Off white	92-95	1679	1068	1650	420	497

3.2. Electronic Spectral data for the complexes :

The UV-Visible of ligand[L] fig. (5) spectra consideredmostly by 2 mountains of absorption at (222nm, 252nm) gave to ($\pi \rightarrow \pi^*$) & ($n \rightarrow \pi^*$)respectively. These electronic transition have been moved to lower orhigher frequencies in UV of every primed complex, prove the ligand's organization with the ions .

ElectronicNi (II) composite fig.(6) spectrum has shown peaks of absorption, those peaks at (240nm and 262nm) can be given to the intra – ligand. The peak at (692nm) has been a result of (d-d) type of the electronic transition ${}^{3}A_{2}g \rightarrow {}^{3}T_{1}g$ whereas the final top at (762nm) ${}^{3}A_{2}g \rightarrow {}^{3}T_{2}g$. These peaks have been in respectablearrangement of the Oh geometry for the Ni(II)complex.

The Hg(II) complex's electronic spectrum fig.(7) shows the peaks of absorption at (230, 260) nm raises to ($\pi \rightarrow \pi^*$), ($n \rightarrow \pi^*$) respectively, the metal ion of those types of the complexes be owned by d¹⁰ system and this metal showed no (d-d) electronic transition.

The electronic spectrum of La(III) complex fig.(8) showed the peaks of absorption at (224 nm, 256nm)raises to ($\pi \rightarrow \pi^*$), ($n \rightarrow \pi^*$) and charge transfer correspondingly, the metal ion of these types of the complexes belong to d⁰ system and this metal showed no (f-f) electronic transition^[22-25].

Compounds	conductivity	λ(nm)	υ- (cm ⁻¹)	εтах	Transitions
				L/mol.cm	
L		222	45045	1395	π→π*
		252	39682	836	n→π*
[Ni(L) ₂](H ₂ O)		240	41666	4000	$\pi \rightarrow \pi^{*}$
		262	38167	4000	n→π*
	neutral	692	14450	19	$^{3}A_{2g} \rightarrow ^{3}T_{1g}$

Table (2) the electronic results of compounds and conductivity

		760	13157	22	${}^{3}A_{2g} \rightarrow {}^{3}T_{2g}$
[Hg(L) ₂](H ₂ O)	neutral	230	43478	4000	$\pi ightarrow \pi^*$
		260	38461	2582	n→π*
[La(L) ₂](Cl)	1:1	224	44642	2443	$\pi ightarrow \pi^*$
		256	39062	3175	n→π*

3.3. Thermal Decomposition of the ligand (L) and $[Ni(L)_2] H_2O$

3.3.1 Thermal Decomposition of the ligand (L)

The thermogram for $C_{21}H_{16}N_2OShas$ been illustrated in Fig. (9). In TGA curve, peak which has been recognized at 168.47 °C is associated with the loss of (C_2H) amounts, (obs. = 0.80mg, 7.363%; calc. = 0.81mg). The second step at (242.1)°C is associated with the loss of (C_2H) portions, (obs. = 0.80mg, 7.333%; calc. = 0.81mg). The third step at (389.35)°C is associated with the loss of ($C_7H_6N_2S$) portions, (obs. = 4.79mg, 43.607%; calc. = 4.81mg) .the fourth step at (594.409)°C is associated with the loss of (C_4H_0) portions, (obs. = 1.03mg, 9.466%; calc. = 1.04mg). The final remainder of the compound which has been observed higher than 594.409 °C is assigned to (C_9H_4), (obs. = 3.58 mg, 32.55%; calc. = 3.59mg). The DSC curve of the analysis has proven that the peaks at 83.3, 280, 320°Cindicate aprocess of the endothermic decomposition. The peaks that have been observed at 262.20, 299.5, 500 °C were related to exothermic decomposition processes^{(26).}

3.3.1 TD of [Ni (C₂₁H₁₇N₂O2S)₂]

The thermo gram for [Ni (C₂₁H₁₅N₂OS)₂] H₂O is illustrated in Fig. (10). In TGA curve, peak documented at 330.148 °C is associated with the defeat of (H₂O, 4(C₆H₅), CO, C₂H) portions , (obs. = 7.98 mg, 49.886%; calc. = 7.99 mg) The second step at 594.886°C that designated the loss of (C₈H₈N₂O) amount, (obs. = 4.08mg, 25.541%; calc. = 4.09mg) The final remainder of the compound which has been observed higher than 594.886 °C is assigned to (NiC₇HN₂O₂S), (obs. = 4.27 mg, 26.72%; calc. = 4.28mg). The curve of theDSC analysis has proven that the peaks at 104.5, 254.5, 284.9 °Cindicate aprocess of the endothermic decomposition. The peaks that have been observed at 215, 260, 420 °Chave beenassociated with theprocesses of the exothermic decomposition. The endothermic and exothermic peaks canshow the ignition of the natural ligand in the argon atmosphere. The last endothermic pinnacle can imply the breaking of the metal-ligand bond ⁽²⁷⁻³⁰⁾

Table (3) thermal analyses of ligand (L) and [Ni(L)₂] H₂O

	Stages	Temperature of Decomposition Initial-Final (°C)	Estimated (calculated)		
Complex			Mass Loss	Total mass Loss	Assignments
	1	60-168.47	0.80 (0.81)		(C ₂ H)-
	2	168.47-242.1	0.80 (0.81)	3.58	(C2H)-
L			4.79	(3.59)	
	3	242.1-389.359	(4.81)		C7H₅N₂S))-
	4	389.35-594.40	1.03 (1.04)		-(CH₄O)
	1	90-330.148			-(H ₂ O)
[Ni (L) ₂]H ₂ O			7.98 (7.99)	4.27	(C ₂₇ H ₂₁ O)
	2	330.148-594.88	4.08	(4.28)	- (CH ₃ O ₂)
			(4.09)		

References :

1-Wurood Ali Jaafar.[2018]. Journal of Global Pharma Technology. 10(06):513-520.

2- Basimamohsensarhan and WuroodA.J.Al-saedisajid M Lateef., [2016] .DJPS (12)

,10-27.

3- Wurood A jaafar.[2012]: IBN ALHAITHAM JORNAL, 25(1).

4- Wurood A.J. Al-SaediSajid. M. Lateef, Basima.M.Sarhan [2015]. **INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY**. ,4(2),606-620.

5- Wurood Ali Jaafar and Ruwaidah S. Saeed, [2020], Sys Rev Pharm, 11(10):134-143

6- Zainab A. Jabarah, Inas S. Mahdi, Wurood A. Jaafar, [2019], Egyptian Journal of Chemistry, 62(10), 1-10.

7- B. S. Kusmariya, S. Tiwari, A. Tiwari, A. P. Mishra, G. A. Naiku, U. J. Pandit, J. Molec. Struct., 1116, (2016), 279–291.

8- E. Helen, P. Bai, S.Vairam, Asia J. Chem., 25(1), (2013), 209-216. 2- M. Arshad, Saeed-ur-Rehman and others, Turk. J. Chem., 32, (2008), 593-604

9- L. Mitu, M. Ilis, N. Raman, M. Imran and S. Ravichandran, E-J. Chem., 9 (1), (2012), 365-372.

10- L. Mitu, M. Ilis, N. Raman, M. Imran and S. Ravichandran, E-J. Chem., 9 (1), (2012), 365-372.

11- M. H. Soliman, G. G. Mohamed, SpectrochimicaActa Part A: Molec. and Biomolecular Spectroscopy, 107, (2013), 8–15.

12- A.Z. El-Sonbati , M.A. Diab, A.A. El-Bindarya, G.G. Mohamed, Sh. M. Morgan, M.I. Abou-Dobara, S.G. Nozh, J. Molec. Liquids, 215, (2016), 423–442.

13- A.Z. El-Sonbati , M.A. Diab, A.A. El-Bindarya, G.G. Mohamed, Sh. M. Morgan, M.I. Abou-Dobara, S.G. Nozh, J. Molec. Liquids, 215, (2016), 423–442.

14- Hassan, Shaimaa A., Sajid M. Lateef, and Ismaeel Y. Majeed, Research Journal of Pharmacy and Technology 13.6 (2020): 3001-3006.

15-Hassan, Shaimaa A., Sajid M. Lateef, and Ismaeel Y. Majeed. , Journal of Global Pharma Technology 10.7(2018):307-317

16-Salloom, Hawraa K., Sajid M. Lateef, and Shaimaa A. Hassan, Journal of Global Pharma Technology 12.2(2020):26-36.

17-Mohamad Jaber Al-Jeboori, Hasan Ahmad Hasan, Worood A Jaafer Al-Sa'idy, **Transition** metal chemistry, 34, 6, (2009).

18. Ramasubramanian AS, Bhat BR, Dileep R, Rani S (2010) J Sce Chem. 2(12): 136.

19. Ali A (2004) Chemistry Department, College of Science, University of Babylon.

20. Carlin R Van A (1977) a magnetic properties of Transition Metal Compounds. Springer – Verlage, New York.

21. Mulay L (1963) a magnetic Susceptibility. John Wiley and sons, New York. 1 (4).

22. RC Shank, JP Duguid, BP Marmion, RA Swain (1975) "The practical of medical microbiology 12th ed.", 2.

23. MS Suresh, V Prakash (2011) J. Chem. 8 (3): 1408-1416.

24. MS Suresh, V Prakash (2011) Inte. J. Cur. Res. 3 (2): 068-075.

25. N Raman, A Kulandaisamy, C Thangaraja (2004) **Synth. React. Inorg. Met. Chem**. 34, 1191–1210.

26. A Kulandaisamy, T Kavitha, S Angaiarkanni, P Thillaiarasu (2013) **Chem. Sci. Trans**. 2, 147–152.

27. AP Mishra, R Mishra, R Jain, S Gupta (2012) J. Mycobi. ,40,1,20-26.

28. A Patel, S Bari, G Talele, J Patel M Sarangapani (2006) .IJPR ,4, 249-254.

29- Rehab K. al shemary, Lekaa K. Abdul Karim and Wurood A. Jaafar, [2017], **Baghdad Science** Journal, 14(2)

30- Ali H. Samir Khalid F. Ali and Ruwaidah S. Saeed Synthesis and Characterization of Some New Thiazine Azetidine and Thiazolidine Compounds Containing 1,3,4- Thiadiazole Moiety and Their Antibacterial Study , **Ibn Al-Haitham Jour. for Pure & Appl. Sci**. 2014 27 (3):350-364