

Unconditional Decomposition Of Wiza Property For Operators In Banach Space

Esameldin Abdalla Sidahmed Yahiya¹, Zakieldeen Aboabuda Mohamed Alhassn Ali², Tasneem Kamalaldeen³, Amna Mahmoud Ahmed Bakhit⁴ and Mutazmohammed Elbagir Eltiganiabdelsalam⁵

¹Deanship of the Preparatory Year, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia. ²Deanship of the Preparatory Year, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia. ³Department of Basic Science, Joint First Year, Saudi Electronic University, Najran, Saudi Arabia. ⁴Deanship of the Preparatory Year, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia. ⁵Deanship of the Preparatory Year, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia.

Abstract

In this paper we study a linear transform between bounded linear operators for every continuous surjective algebra homomorphism from $X \rightarrow Y$ on Banach space has the Wiza property. Through this study we get Banach space X which satisfies the Wiza property if and only if it satisfies the rule deduced from the main result. This rule is satisfactory for a Banach space with is omorphicbases for finite co type and Neumann norm (p-spaces).

Key words (Haar Basis, Schauder Decomposition, Neumann Space)

1. Introduction

We will start our study in this paper with the problem mentioned by Horváth [1], does space $L^p = L^p(0,1)$ have Wiza property? And based on our main result, Corollary (1.14), the space L^p have aWiza property, but we do not know whether L^1 it has the property, and also in [2, theorem 4.3.10] the space L^{∞} have the Wiza property because L^{∞} is isomorphic as a Banach space tol^{∞}. Also previously identified the spaces L^p for $1 \le p \le \infty$, have the Wiza property [1]. If X, Y banach spaces we say that X have Wiza property if the linear transform from the space L(X) on X onto L(Y) is injective and Banach space X called isomorphic as Banach space to Y in [3].

Before stating our theorems we need the following definitions:

(1.1)Definition (unconditional schauder decomposition)(USD)

Let $(E_{\alpha})_{\alpha \in A}$ a family of closed subspaces of X, we called $(E_{\alpha})_{\alpha \in A}$ an USD, for X if $\forall x \in X$ there is a unique representation $x = \sum_{\alpha \in A} x_{\alpha}$ so that the convergence unconditional and $\forall \alpha \in A$, the vector $x_{\alpha} \in E_{\alpha}$. We conclude that $E_{\alpha} \cap E_{\beta} = \{0\}$, When $\alpha \neq \beta$, and there are idempotents P_{α} on X such that $P_{\alpha} X = E_{\alpha}$, $P_{\alpha}P_{\beta} = 0$, And therefore P_{α} are in L(X).

(1.2) Definition

Let B subset of A then the family $\{\sum_{\alpha \in F} P_{\alpha} : F \subset B \text{ finite}\}\$ is bounded in L(X) and convergence to P_{β} has a range $\overline{\text{span}}_{\alpha \in \beta} E_{\alpha}$.

(1.3) Definition (suppression constant)

We define the suppression constant of the decomposition by $\{\|\sum_{\alpha \in F} P_{\alpha}\|: F \subset A \text{ finite}\}$. that is mean $\|P_{\beta}\|$ on definition(1.2) is bounded for all subsets B of A by this suppression constant.

(1.4)Remark

The family $(e_{\alpha})_{\alpha \in A}$ forms USD basis for X where $E_{\alpha} = K_{e_{\alpha}}$ (K is the scalar field), in the following we use schauder decomposition of E_{α} is a finite dimension, this decomposition is called finite dimensional decomposition (FDD) and discussed in [4, section 1.9].

(1.5) Definition

Let $(\mathbf{E}_{\alpha})_{\alpha \in \mathbf{A}}$ a family of conditional schauder decomposition (CSD) for X is boundedly complete if $\{\|\sum_{\alpha \in \mathbf{F}} x_{\alpha}\|_{X} : \mathbf{F} \subset \mathbf{A} \text{ finite }, x_{\alpha} \in \mathbf{E}_{\alpha}\}$ is bounded, then the sum $\sum_{\alpha \in \mathbf{F}} x_{\alpha}$ convergence in X

(1.6) Definition

Let $(E_{\alpha})_{\alpha \in A}$ a family of (CSD) for X we say that decomposition is discrete lower, upper p estimate respectively if there exist a constant $C < \infty$ so that x_1, \dots, x_n are finitely many vectors in X, such that $\forall \alpha \in A$, there is at most one i for which $\{x = \sum_{i=1}^{n} x_i, P_{\alpha} x_i \neq 0, 1 \leq i \leq n\}$ the inequality

$$\left\|\sum_{i=1}^{n} x_{i}\right\| \geq \frac{1}{C} \left(\sum_{i=1}^{n} \|x_{i}\|^{p}\right)^{\frac{1}{p}}, \text{respectively,} \left\|\sum_{i=1}^{n} x_{i}\right\| \geq C \left(\sum_{i=1}^{n} \|x_{i}\|^{p}\right)^{\frac{1}{p}}$$

If F_1, \dots, F_n are a discrete finite subset of $A, \forall x \in X$, we say that decomposition has a discrete lower p estimate with constant C, then

$$\|\mathbf{x}\| \ge \frac{1}{C} \left(\sum_{j=1}^{n} \left\| \sum_{\alpha \in F_{j}}^{n} P_{\alpha} \mathbf{x} \right\|^{p} \right)^{\frac{1}{p}}$$

Where P_{α} is idempotent [5].

(1.7) Definition (Type and Co type)

If p, q (type ,co type) respectively then every USD decomposition for X has a discrete (upper p , lower q) estimate where the constant depend only on the definition (1.3) of decomposition and p, qconstant of X such that if $1 then every USD for subspace of a quotient of <math>L^p$ has a discrete (upper p , lower 2) estimate , while $2 \le p < \infty$ then every USD decomposition for X has a discrete (upper 2 , lower p) estimate [2, Theorem 6.2.14].we will used this definition in the following theorem when there is a surjective homomorphism from L(Y)onto L(X) for transferring information from Y to X.

(1.8) Theorem

Let $(E_{\alpha})_{\alpha \in A}$ a family of USD for X that has a discrete lower p estimate , $1 \leq p < \infty$ and $Y \supseteq X$, if A_1, \dots, A_n disjoint of subset of A and P_{Aj} is basis defined in definition (1.2) and K_1, \dots, K_n are operators in L(Y), then there exist a constant $C < \infty$ is the discrete lower p constant of $(E_{\alpha})_{\alpha \in A}$ such that

$$\left\|\sum_{i=1}^{n} K_{i} P_{i}\right\| \leq C \left(\sum_{i=1}^{n} \|k_{i}\|^{q}\right)^{\frac{1}{q}}, \qquad \frac{1}{p} + \frac{1}{q} = 1$$

Proof.

Let $x \in X$. then

$$\begin{split} \left\|\sum_{i=1}^{n} K_{i} P_{ix}\right\| &\leq \sum_{i=1}^{n} \|K_{i}\| \, \|P_{ix}\| \leq \left(\sum_{i=1}^{n} \|k_{i}\|^{q}\right)^{\frac{1}{q}} \left(\sum_{i=1}^{n} \|P_{ix}\|^{p}\right)^{\frac{1}{p}} \\ &\leq C \left(\sum_{i=1}^{n} \|k_{i}\|^{q}\right)^{\frac{1}{q}} \|x\| \end{split}$$

(1.9) Definition (Almost discrete)

Let $(E_n)_{n=1}^{\infty}$ a family of sets and $(E_1 \cap E_2)$, $(E_2 \cap E_3)$, $\cdots \cdots \cdots , (E_{n-1} \cap E_n)$ is finite we say that E_n is an almost discrete.

(1.10)Definition[property(*)]

Let $\{N_{\tau}: \tau < C\}$ is an almost discrete continuum of natural numbers of infinite sets for each $\tau < C$, and let $(E_n)_{n=1}^{\infty}$ is unconditional FDD for X defined in (1.4), then X is symmetric to closed linear span of subspaces. Subsymmetric bases and the sum direct of two banach spaces are obvious examples of FDDs that have property (*).In corollary (1.14) and proposition (1.11). We

review that the Haar basis for L^P has property (*), and the consequence by using the definition (1.10).

(1.11) proposition

Let $(E_n)_{n=1}^{\infty}$ is unconditional FDD for X and (E_n) has property (*) see before is an almost discrete family $\{N_{\tau}: \tau < C\}$ in (1.10).Let Ψ is a nonzero, non-injective continuous homomorphism from L(X)onto a Banach algebra \mathcal{G} .Then for each $\tau < C$, $\Psi(P_{N_{\tau}})$ is a nonzero idempotent in \mathcal{G} .Furthermore, if F is finite subset then there is constant $C < \infty$ such that $\|\sum_{\tau \in F} \Psi(P_{N_{\tau}})\|_{\mathcal{G}} \leq C$. If \mathcal{G} is a sub-algebra of L(Y) for some Banach space Y, then $\Psi(P_{N_{\tau}})$ is a family of computingAccessories to Y of projections related with USD for a subspace Y_0 of Y.

Proof.

Let F is a finite subset of $\{\tau: \tau < C\}$, $N_{\tau} \cap N_{\delta} \subset \mathcal{H}$ so that \mathcal{H} is finite set of natural numbers for all $\{\tau, \delta\} \in F$. $P_{N_{\tau}}$ has a range symmetric to X and Ψ is not zero then $\Psi(P_{N_{\tau}})$ is nonzero idempotent in \mathcal{G} . Assume that $\mathcal{S}_{\tau} = P_{N_{\tau}/\mathcal{H}}$ and $\{P_{N_{\tau}} - \mathcal{S}_{\tau}, \forall \tau \in F\}$ we find that the basis projections from X onto $\overline{span}\{E_n: n \in N_{\tau}\}$ are closed spans of disjoint subsets of $(E_n)_{n=1}^{\infty}$ and Ψ is nontrivial ideal in L(X)contains the finite rank operators such that $\Psi(P_{N_{\tau}}) = \Psi(\mathcal{S}_{\tau})$ for each $\tau \in F$ so

$$\left\|\sum_{\tau \in F} \Psi(\mathcal{S}_{\tau})\right\|_{\mathcal{G}} \leq \left\|\sum_{\tau \in F} \mathcal{S}_{\tau}\right\| \|\Psi\| \leq C \|\Psi\|,$$

where C is the suppression constant (1.3). The last statement is now clear.

After this preliminary we will mention the main theorem in this article.

(1.12) Theorem

A banach space X has a Wiza property if $(E_n)_{n=1}^{\infty}$ is unconditional FDD such that $(E_n)_{n=1}^{\infty}$ has a property (*) and has a discrete lower p estimate [Therem (1.8)] for some $p < \infty$.

Proof.

To prove this theorem we will suggest that we can obtain a contradiction by continuing the proposition (1.11). Let Ψ is a non-injective continuous homomorphism from L(X) onto L(Y) for some nonzero Banach space Y. Where the property (*) of (E_n) is proved and for $F \subset N$, The basis projection of {E_n: $n \in F$ } is denoted by P_F. We suggest that if a contradiction exists, it is sufficient to show that the subspace Y₀ is complemented in .In fact, if Y₀ is completed in Y, then L(Y₀) is symmetric as Banach's algebra to the sub-algebra of L(Y). However, when defining Y_τ = $\Psi(P_{N_{\tau}})$ Yfor $\tau < C$, we know that (Y_τ)_{$\tau < C$} is USD of Y₀. Thus L(Y) cannot be a continuous image of L(X) since X is separable and has an unconditional FDD then the density character of L(X) is equal to c. Thus the theorem ends.

To prove that Y_0 must complete in Y, we use Proposition (1.11) we have $\left\|\sum_{\tau \in F} \Psi(P_{N_{\tau}})\right\|_{L(Y)} \leq C$ and [Therem (1.8)]That is, we only need to find the constant C to approve $(Y_{\tau})_{\tau < C}$ has a discrete lower p estimate so If F_1, \dots, F_n are a discrete finite subset and y in Y, then

$$\|\mathbf{y}\| \ge \frac{1}{C} \left(\sum_{j=1}^{m} \left\| \sum_{\tau \in F} \Psi(\mathbf{P}_{\mathbf{N}_{\tau}}) \mathbf{y} \right\|^{p} \right)^{\frac{1}{p}}$$
(1)

As in Proof Proposition (1.11), we can write $\Psi(P_{N_{\tau}}) = \Psi(S_j)$ with S_j for $1 \le j \le m$, So (1) can be rewritten as

$$\|\mathbf{y}\| \ge \frac{1}{C} \left(\sum_{j=1}^{m} \left\| \Psi(\mathcal{S}_j) \mathbf{y} \right\|^p \right)^{\frac{1}{p}}$$
(2)

From Therem (1.8) for any K_1, \dots, K_m in L(Y)we have $\left\| \sum_{i=1}^m K_j \Psi(\mathcal{S}_j) \right\| \le C \left(\sum_{j=1}^m \|K_j\|^q \right)^{\frac{1}{q}}, \quad \frac{1}{p} + \frac{1}{q} = 1$ (3)

Where C depends only on p Take any $y \in Y$ and take $\lambda_i \geq 0$ with

$$\sum_{i=1}^{m} \lambda_j^q = 1 \quad \text{and} \quad \sum_{j=1}^{m} \lambda_j \|\Psi(\mathcal{S}_j)y\| = \left(\sum_{j=1}^{m} \|\Psi(\mathcal{S}_j)y\|^p\right)^{\frac{1}{p}}$$

Let $Y_0 \in Y$ be any unit vector and let K_j be $\Psi(\mathcal{S}_j)$ followed by $\Psi(\mathcal{S}_j)y \to \lambda_j \|\Psi(\mathcal{S}_j)y\|y_0$. Then by (3),

$$\left(\sum_{j=1}^{m} \left\|\Psi(\mathcal{S}_{j})y\right\|^{p}\right)^{\frac{1}{p}} = \sum_{j=1}^{m} \lambda_{j} \left\|\Psi(\mathcal{S}_{j})y\right\| = \left\|\sum_{i=1}^{m} K_{j}\Psi(\mathcal{S}_{j})y\right\|$$
$$\leq C\left(\sum_{j=1}^{m} \left\|K_{j}\right\|^{q}\right)^{\frac{1}{q}} \left\|y\right\| \leq C\left\|y\right\|, \text{ which is } (2)$$

(1.13) Corollary

A banach space X has a Wiza property if has a finite cotybe and subsymmetric basis.

(1.14) Corollary

The Haar basis $(h_i)_0^{\infty}$ is an unconditional basis of L^p then has a Wiza property for 1 .

Proof.

From Theorem (1.12) and definition (1.10), we show that the Haar basis of L^p has a property (*). Define for $\tau < C$ an unconditional haarbasis for $L^p(0.1)$ as follows

$$X_{\tau} = \overline{\text{span}} \{ h_{n,i} : n \in N_{\tau}, 1 \le i \le 2^n \}$$

So that $(h_{n,i})$ is the set of functions of sub-intervals of (0, 1) that have length 2^{-n} , X_{τ} is symmetric to L^p with the isomorphism constant depending only on p by theorem in[6].

2. Examples and properties

We show some of examples of spaces with a property (*) and with a Wiza property and prove some properties of definition (1.10).

(2.1) Definition

Let $(E_n)_{n=1}^{\infty}$ is an unconditional FDD for X,We say that (E_n) has property (*) with , there is $\{N_{\tau}: \tau < C\}$ of infinite sets of Nfor each $\tau < C$, X is , such that K is positive constant and symmetric to the closed linear span of $\{E_n: n \in N_{\tau}\}$. However, we need this quantitative idea to fully generalize Theorem(2.5).

(2.3) Definition

We define the subspace of $(\bigotimes_{n=1}^{i} X_i)_y$ of all sequences of the form $(0, \ldots, 0, x_i, 0, \ldots)$ by $(X_i \bigotimes e_i)$.for $= 1, 2, \ldots$, where (e_i) is an unconditional basis for Y and X_i and $\|\overline{x}\| = \|\sum_{i=1}^{\infty} \|x_i\| \cdot e_i\|_Y$ is finite.

(2.4) Theorem

Let $(E_n^i)_{n=1}^{\infty}$ is an unconditional FDD for X_i , satisfying property (*) and definition (1.6) with a constant, for i = 1, 2, ..., we say that $(\bigotimes_{n=1}^i X_i)_y$ has a Wiza property if an unconditional FDD $(E_n^i \bigotimes e_i)_{i,n=1}^{\infty}$ of $(\bigotimes_{n=1}^i X_i)_y$ satisfies (*) for each subsymmetric basis (e_i) of Y, and (e_i) has such an estimate.

Proof.

By definitions (1.10) and (2.1).Let $\{N_{\tau}^i: \tau < C\}$, it is sufficient to prove that theWiza property follows theorem (1.12) then

$$\{(i, n): i \in N_{\tau} \text{ and } n \in N_{\tau}^{i}\}$$

is an almost discrete continuum of subsets $\mathbb{N} \times \mathbb{N}$. if $(E_n)_{n=1}^{\infty}$ satisfy theorem (1.12) have discrete lower p estimates and (e_i) has such estimate then the unconditional FDD $(E_n^i \otimes e_i)_{i,n=1}^{\infty}$ satisfy definition (2.1).

(2.5) proposition

 X_p Satisfies the property (*) and Wiza property if $p \in (1, +\infty) \setminus \{2\}$

Proof.

Let p > 2. Assume that \mathbb{N} as a discrete union of finite subsets ζ_j for j = 1, 2, ..., with $|\zeta_j| \to \infty$. for $i \in \zeta_j$ let $\zeta_i = |\zeta_j|^{\frac{2-p}{2p}}$, so $\eta_i \to 0$ and for every $j, \sum_{i \in \zeta_j} \eta_i^{\frac{2-p}{2p}} = 1$. let $E_j = \text{span} (e_i \oplus \zeta_i f_i)_{i \in \zeta_j}$ for any infinite sub-sequence of unconditional FDD (E_j), the closed span of this subsequence is similar to X_p . FDD is unconditional because it lie L^p , it has a lower p estimate. Consequently the result follows theorem (1.12). Trace case 1 given the dual FDD.

In [7] we find a few more is omorphically distinct spaces that are isomorphic to complemented subspaces of L^p when $p \in (1, \infty) \setminus \{2\}$ Based on X_p and the classical complementary subspaces of L^p , can show that they all have the (*) and Wiza property.from theorem (2.5) and Based on X_p This space is denoted by B_p in [7].The ℓ^p sum of spaces X_i each having a one symmetric basiswith uniform constant.if X_i is isomorphic to ℓ^2 the isomorphism constant tends to (∞). B_p has (*) and the wiza property.

Also in [8] for $p \in (1,\infty) \setminus \{2\}$ the first infinite family of non-isomorphic complemented subspaces of L^p is generated .generally, if $(E_n^i)_{n=1}^{\infty}$ is an unconditional FDD for X_i , X_1, X_2Y_1, Y_2 subspaces of $L^p(\Omega)$ and $T_i \in (X_i, Y_i)$ Then $(E_n^1 \otimes_p E_m^1)_{n,m=1}^{\infty}$ is an unconditional FDD such that $T_1 \otimes_p T_2 \in L(X_1 \otimes_p X_2, Y_1 \otimes_p Y_2)$. (This was done in [8]), that the $(X \otimes_p Y)$ isomorphism class depends only on the isomorphism classes X and Y and that if X and Y are complemented in $L^p(\Omega)$, then $(X \otimes_p Y)$ is complemented in $L^p(\Omega^2)$. Also we define by X_p some isomorph of X_p that is complemented in $L^p[0, 1]$. let $Y_1 = X_p$, and for n = 2, 3, ..., let $Y_n = Y_{n-1} \otimes_p X_p$. it is clear that the spaces Y_n are complemented in some L^p space isometric to $L^p[0, 1]$.

(2.6) Theorem

Let's say X_1, \ldots, X_n are Banach spaces, each of which has an unconditional FDD with property (*). Suppose $Y_1 \otimes \cdots \otimes Y_n$ denotes the tensor product with norm in some n classes with the following properties:

I. for
$$j = 1, ..., n$$
, $IfT_j \in (Y_j, Q_j)$ then
 $T_1 \otimes \cdots \otimes T_n: Y_1 \otimes \cdots \otimes Y_n \to Q_1 \otimes \cdots \otimes Q_n$

Is bounded.

II. If Y_j has an unconditional FDD $(F_n^j)_{n=1}^{\infty}$, then $(F_{n1}^1 \otimes \cdots \otimes F_{nm}^j)_{n1,\dots,nm=1}^{\infty}$ is an unconditional FDD for the completion of $(Y_1 \otimes \cdots \otimes_n Y_n)$.

Then, if (X_1, \ldots, X_n) , the completion of $(X_1 \otimes \cdots \otimes X_n)$ has an unconditional FDD with property (*).

Proof.

Let $(E_n^i)_{n=1}^{\infty}$ is an unconditional FDD for X_i , for each = 1,..., m. By definition (1.10) $\{N_{\tau}^i: \tau < C, n \in N_{\tau}^i\}$. Consider

$$\{N^{1}_{\tau} \times \cdots \times N^{m}_{\tau} : \tau < C\}$$

The continuum of subsets of \mathbb{N}^m . This is an almost discretecollectionwhose origin is considered a continuum.

Property (II): tensor norms $(E_{n1}^1 \otimes \cdots \otimes E_{nm}^j)_{n1,\dots,nm=1}^{\infty}$ is an unconditional FDD for the completion of $(X_1 \otimes \cdots \otimes X_m)$.

Property (1) for each < C, the closed linear span of

$$(E_{n1}^{1}\otimes\cdots\cdots\otimes E_{nm}^{J})_{(n1,\dots,nm=1)\in N_{\tau}^{1}\times\cdots\times N_{\tau}^{m}}$$

is isomorphic to the completion of $(X_1 \otimes \cdots \otimes X_m)$.

it is clear from definition(2.3) that if X_1, \ldots, X_m are subspaces of L^p for $1 \le p < 2$ that have subsymmetric bases, then $(X_1 \otimes \cdots \otimes X_m)$ has property (*) and the Wiza property.(For p > 2, the isomorphism includes only ℓ^p and ℓ^2).

(2.7)Problem

Let $\in (1, \infty) \setminus \{2\}$, suppose that X a complementary subspace of L^p . Does X have a Wizaproperty? When X has an unconditional basis and it is one of the \aleph_1 spaces was done in [9].

We finalize this part by discussing another class of classic Banach spaces that has the property (*)and Wiza property; That is, the Neumann C_p representations of compact operators Ton ℓ^2 of $(T * T)^{1/2}$ eigenvalues are p summable. WeHandle case $1 but then note how one can prove that <math>C_1$ (the operators of the trace class on ℓ^2) have a Wizaproperty. Neither C_1 nor its pre dual C_∞ has an unconditional FDD [10] and therefore these spaces do not have a property (*).In the complement, letp = 2because C_2 , being isomorphic with ℓ^2 , has already been discussed.

First, assume T_p subspace of C_p formed by the lower trigonometric matrices of C_p . Here we exclude $p = 1, p = \infty$ and p = 2. There is no unconditional basis for T_p and C_p [10], but T_p has a

unconditional FDD (E_n); which is $E_n = span_{1 \le j \le n} e_i \otimes e_j$; That is, the matrix is in E_n if and only if the only nonzero terms are in the first n entries of the n-throw. Since multiplying all entries in a row with the same standard order of magnitude is equal scale on C_p , (E_n) up to 1unconditional. If M is an infinite subset of N,let $T_p(M)$ be the closed span in T_p of $(E_n)_{n \in M}$ and is norm one complemented in T_p Since (E_n) is 1-unconditional We claim that T_p is isometric to a K_p -complemented subspace of $T_p(M)$ with K_p independent of M. The space T_p is isomorphic to $\ell^p(T_p)$ [11, p. 85], thus the decomposition in [2, Theorem 2.2.3] shows that T_p is isomorphic to $T_p(M)$. Thus T_p has property (*).

Theorem (1.12) applies because C_p has finite cotype when $p < \infty$, so T_p has the Wiza property when $1 . Now for <math>1 , <math>T_p$ is complemented in C_p through the projection that zeroes out the inputs that lie above the diagonal [12], [13], it follows [11] that T_p is isomorphic to C_p . Furthermore, for M an infinite set of N, there is subspace Y of C_p that is isometric to $T_p(M)$ such that $T_p \subset Y$, which is required.

(2.8)Theorem

The space T_p has the property (*)for 1 . Then, the space C_p has the Wiza property for <math>1 .

As stated earlier, it can be shown that C_1 has the Wiza property which does not have unconditional FDD. despite this, the C_p norm for $1 \le p \le \infty$ in [10] is called the unconditional matrix norm; i.e., the norm of a linear combination of the natural basis elements equivalent to the norm of sequences of $(\varepsilon_i)_{i=1}^{\infty}$ and $(\delta_j)_{j=1}^{\infty}$. One can determine the property variance (*) of bases with this unconditional property, and check that the normal bases for C_p , It fulfills this characteristic, and proves a copy of Theorem (1.12). This shows that C_1 has a Wiza property .This difference from Theorem (1.12) does not apply to C_{∞} , which does not have ainfinite cotype defined in (1.7), and we do not know if C_{∞} has a Wiza property. The main reason for bringing C_p is to explain why the property (*) for FDD unconditional rather than just unconditional bases.

Acknowledgment:

The authors would like to thanks the Deanship of Scientific Research at Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia for the assistance.

References

- [1] B. Horváth, When are full representations of algebras of operators on Banach spaces automatically faithful?, Stud.Math. 253 (3) (2020) 259–282.
- [2] F. Albiac, N.J. Kalton, Topics in Banach Space Theory, 2nd edition, Graduate Texts in Mathematics, vol. 233, Springer, New York, 2016.
- [3] M. Eidelheit, On isomorphisms of rings of linear operators, Stud. Math. 9 (1940) 97–105.

- [4] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces, vol.I, Ergebn. Math. Grenzgeb., vol. 92, Springer, 1977.
- [5] W.B. Johnson ,The SHAI property for the operators on L^p, Journal of Functional Analysis a / Journal of Functional Analysis 282 (2022) 109333
- [6] J.L.B. Gamlen, R.J. Gaudet, On subsequences of the Haar system in L^p [-1, 1], (1 $\leq p \leq \infty$), Isr. J. Math. 15 (1973) 404–413.
- [7] H.P. Rosenthal, On the subspaces of L^p (p > 2) spanned by sequences of independent random variables, Isr. J. Math. 8 (1970) 273–303.
- [8] G. Schechtman, Examples of L^p spaces (1 \infty), Isr. J. Math. 22 (2) (1975) 138-147.
- [9] J. Bourgain, H.P. Rosenthal, G. Schechtman, An ordinal L^p-index for Banach spaces, with application to complemented subspaces of L^p, Ann. Math. (2) 114 (2) (1981) 193–228.
- [10] S. Kwapień, A. Pełczyński, The main triangle projection in matrix spaces and its applications, Stud. Math. 34 (1970) 43–68.
- [11] J. Arazy, J. Lindenstrauss, Some linear topological properties of the spaces C_p of operators on Hilbert space, Compos.Math. 30 (1975) 81–111.
- [12] V.I. Macaev, Volterra operators obtained from self-adjoint operators by perturbation, Dokl. Akad.Nauk SSSR 139 (1961) 810–813 (in Russian).
- [13] I.C. Gohberg, A.S. Markus, I.A. Feldman, Normally solvable operators and ideals associated with them, Am. Math. Soc. Transl. 61 (1967) 63–84.