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Abstract 

Includes paper on the definition of a system of linear and nonlinear way of solving linear and we talked about a 

special case of the system A x b=  in this case is 0b = . And we also talked about way to solve the system 

A x b=  (method of direct and indirect). And to talked about algorithm for QR  way to solve the system and 

your comparing between method by hand. 
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1.Introduction 

Linear algebra is based on systems of linear equations, and they introduce some of the most important concepts in 

a straightforward and tangible manner. In several sections, a systematic method for solving systems of linear 

equations is described. 

Demonstrate how a vector equation and a  computations. for utilized be will algorithm this essay, the Throughout

                                                                              .matrix equation can be used to represent a system of linear equations 

As a result of this equivalence, problems requiring linear combinations of vectors will be reduced to queries 

as The fundamental concepts of spanning and linear independence,  .regarding systems of linear equations

we study the beauty and power of linear algebra, it will play an important role throughout the text. The 

importance of linear algebra in applications has risen in lockstep with the advancement of computing 

power, with each new generation of hardware and software triggering a demand for even greater 

capabilities. Through the rapid rise of parallel processing and large-scale computations, computer 

science has become inextricably intertwined with linear algebra. Scientists and technologists are 

today working on issues that were unimaginable only a few decades ago. T o d a y ,  l i n e a r  

a l g e b r a  h a s  m o r e  p o t e n t i a l  u t i l i t y  f o r  s t u d e n t s  t h a n  a n y  o t h e r  c o l l e g i a t e  
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m a t h e m a t i c s  c o u r s e  i n  m a n y  s c i e n t i f i c  a n d  b u s i n e s s  s e c t o r s .  The information 

in this publication lays the groundwork for future research in a variety of fascinating fields. Here are 

a few alternatives; we'll go through more later. Exploration for                                                                   

oil.                                                                                      

While searching for offshore oil resources, a ship's computers calculate thousands of independent systems of linear 

equations per day. Waves bounce off subterranean rocks are measured by geophones attached to mile-long cables 

behind the ship.                                                                                                                                                                                

                                                                                                        

2. Linear Equation Systems (Linear System) 

In mathematic we define a linear equation by the form: 

1 1 2 2 3 3 .............. (1)n na x a x a x a x b+ + + + =  

Where  1 ,...., na a  and b  is real or complex numbers, for example: 

1 2 3

1 2 1 2

2 1

2 2 (2)

4 5 (3)

2 5 (4)

x x x

x x x x

x x

+ − =

− =

= −

 

 

Equation (3) and (4) are not liner because of the presence x1x2 in the second and  

 

1x in the there’d equation. 

A set of one or more linear equations containing a number of variables. 

1 ,...... nx x  

Said to be system of linear equations for example:  

1 2 3

1 3

2 5 8

4 7

x x x

x x

− + =

− = −
 

 (2.1) The matrix equation AX B=  

If n mA  is matrix has n rows and m columns and 1,...., , n

na a R x R  , then the product of  A

and  X denoted by A X , is the linear combination of the columns of A  using the corresponding 

entries in X  as weights that is : 

 

1

2

1 2 1 1 2 2 3 3

.
( .... ) .............. (5)

.

.

n n n

n

x

x

A X a a a a x a x a x a x

x

 
 
 
 

= = + + + + 
 
 
  
 

 

Since the number of columns in A must equal the number of entries in X , AX is defined. 

 

(2.2) Homogeneous Linear Systems 
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A system of linear equations is said to be homogeneous if it can be written in the form 0AX = , 

where A is an n m  matrix and 0 is the zero vector in Rn.  

Such a system 0AX =  always has at least one solution, namely ,x = 0 (the zero vector in Rn . The 

trivial solution is the name given to this zero solution. For 

a given equation 0AX = , the important question is whether there exists a nontrivial solution, that 

is, a nonzero vector x that satisfies  0AX = . 

The homogeneous equation 0AX =  has a nontrivial solution if and only if the equation has at 

least one free variable. 

 

3. Solution of Linear System 

(3.1) Solving the System 0AX =  

We define the method of solution the system by next example: 

 

(3.2) Example 

Determine if there is a nontrivial solution to the following homogeneous system. Then describe the 

solution set. 

1 2 3

1 2 3

1 2 3

3 5 4 0

3 2 4 0

6 8 0

x x x

x x x

x x x

+ − =

− − + =

+ − =

 

 

Solution: 

Let A be the matrix of coefficients of the system and row reduce the augmented matrix [ 0]A =  to 

echelon form: 

3 5 4 0 3 5 4 0 3 5 4 0

3 2 4 0 ~ 0 3 0 0 ~ 0 3 0 0

6 1 8 0 0 9 0 0 0 0 0 0

− − −     
     
− −     
     − −     

 

0A X =  has nontrivial solutions (one for each choice of 3x ) since 3x  is a free variable. To 

describe the solution set, continue the row reduction of  0[ ]A to reduced echelon form: 

4
1 0 0

3

0 1 0 0

0 0 0 0

− 
 
 
 
 
 
 

, since   

 

1 3

4
0

3
x x− =  

2 0x =  

0 0=  
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× 
× × 

Solve for the basic variables 1x and 2x  , and obtain 1 33 4x x= , 2 0x = ,with 3x free. As a 

vector, the general solution of Ax = 0has the form: 

 

3

4

0

1

X

 
 
 

=  
 
 
 

 

 

(3.3) Solving the system A X B=  

In linear algebra, solution sets of linear systems are fundamental objects to study. They will appear later in 

several different contexts. 

 

(3.4) The inverse of a matrix 

A matrix n mA   is  said to be invertible if there is an n n  matrix C  such that C A I=  and 

AC I=  where I I n= ; then  n n  i s  identity matrix. In this case, C  is an inverse of A . In 

fact, C  is uniquely deter If mined by A ,because if B were another inverse of A , then 

( ) ( )B B I B AC B A C I C C= = = = = This unique inverse is denoted by 
1A −
, so that 

1 1A A A A I− −= = . A Singular matrix are invertible matrices that are not invertible sometimes., and 

an 

invertible matrix is called a nonsingular matrix. 

 

(3.5) Determinate of matrices 

Let ,( )i j n nA a =  be square matrix of order n  , then the number A  is called determinate of the matrix  A

. 

(i) Determinate of  2 2  matrix , the matrix A  has inverse if the determinant is not zero. let  ad b c− , if 

0ad b c− =  ,then A  is not invertible and ad b c− is called determinate of A , and denoted by 

det( )A . 

(ii)  Determinate of  3 3  matrix .Let 

a b c

B d e f

g h i

 
 

=
 
  

 , then  

( ) ( ) ( )
e f d f d e

B a b c a e i f h b d i g f c d h g e
h i g i g h

= − + = − − − + − . 

 

(3.6) Note 

If 0B = , then B  has not inverse and called singular matrix. 

 

(3.7) Example  
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Find the inverse of  
3 4

5 6
A

 
=  
 

 

 

Solution 

Since det (3.6) (4.5) 2 0= − = −  , A  is invertible, and

 
1

6 51

4 32
A −

− −
=  

− 

 

Invertible matrices are 

indispensable in linear algebra mainly for algebraic calculations and formula derivations, as in the next 

theorem. There are also occasions when an inverse matrix provides insight into a mathematical 

model of a real-life situation, as in Example, below. 

 

(3.8) Theorem (Unique Solution) 

If A  is an invertible n n  matrix, then for each 
nB R , the equation AX B=  has the unique 

solution is 
1X A B−= . 

 

Proof: 

Take any 
nB R . A solution exists because if 

1A B−
 is substituted for X , then 

1 1( ) ( )AX A A B A A B I B B− −= = = = .So 
1( )A I B−

 is a solution. To prove that the solution is 

unique, show that if U  is any solution, then U ; in fact, must be 1A B− indeed, if AU B= , we can 

multiply both sides by 1A −  and obtain; 
1 1 1,A A U A B U A B− − −= = . 

 

4.Types of matrices 

 

(4.1) (Square Matrix) 

A square matrix has the same number of rows and columns as the number of columns. 

 

(4.2) (Diagonal Matrix) 

A square matrix ,( )i j n nA a =  called a diagonal matrix if each of its non-diagonal element is zero. That is 0ija =  

if i j    , and at least one element 0ija  . 

 

(4.3) (Identity Matrix) 

A diagonal matrix whose diagonal elements are equal to 1 is called identity matrix and denoted by 

nI . That is 

0 ,

1 ,

i j

i j

 
 

= 
. 

 

(4.4) (Upper Triangular Matrix) 

A square matrix said to be a upper triangular matrix if 0,ija i j=  . 

 

(4.5) (Lower Triangular Matrix) 
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A square matrix said to be a Lower triangular matrix if 0,i ja i j=  . 

 

(4.6) Note: 

If A  is a triangular matrix, then det( )A  is the product of the entries on the main diagonal of A .  

 

(4.7) (Symmetric Matrix)  

A square matrix ( )i j n nA a =  is said to be a symmetric if , ,i j j ia a i j=  . 

 

(4.8) (Column Vector) 

A column vector or column matrix is a matrix with only one column. 

 

(4.9) (Elementary Matrix) 

An elementary matrix is one that is produced from an identity matrix by conducting a single elementary row 

operation. The three types of elementary matrices are demonstrated in the following example. 

 

(4.10) Example 

 

Let: 1 2 3

1 0 0 0 1 0 1 0 0

0 1 0 , 1 0 0 , 0 1 0 ,

4 0 1 0 0 1 0 0 5

a b c

E E E A d e f

g h i

       
       

= = = =       
       −       

, calculate  

1 2 3, ,E A E A E A , and describe how these products can be obtained by elementary row operation on A . 

 

Solution 

1 2 3, ,

4 4 4 5 5 5

a b c d e f a b c

E A d e f E A a b c E A d e f

g a h b i c g h i g h i

     
     

= = =     
     − − −     

. 

Addition of −4 times row 1 of A  to row 3 produces 1E A , (This is a row re- placement operation.) 

An interchange of rows 1 and 2 of A  produces 2E A , and multiplication of row 3 of A  by 5 

produces 3E A . 

 

(4.11) Definition  

An indexed set of vectors 1,......, pv v  is said to be linearly independent if the vector equation 

1 1 ...... 0p pc v c v+ + =  has only the trivial solution 1 2 ..... 0pc c c= = = =  . If there is 0ic   

,Then the set is said to be linear dependent. 

 

(4.12) (Column Space) 

A set of all linear combination of the column of A , is called column space.  
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(4.13) (Rank of Matrix) 

The rank of a matrix A , denoted by rank A , is the dimension of the column space of A . 

 

(4.14) (Null Space of Matrix) 

The null space of a matrix A  is the set ( )Nul A  of all solutions of the homogeneous equation 

0AX = . 

 

(4.15) (Basis of Matrix) 

A basis for a subspace A of 
nR  is a linearly independent set in A  that spans A . 

 

(4.16) (The Pivot Column of Matrix) 

The pivot columns of a matrix A form a basis for the column space of A . 

 

(4.17) (Dimensional of Matrix)  

If V  is spanned by a finite set, then V  is said to be finite-dimensional, and the dimension of V  , written 

as dim( )V , is the number of vectors in a basis for V  . The dimension of the zero vector space0 is 

defined to be zero. If V  is not spanned by a finite set, then V  is said to be infinite-dimensional 

 

(4.18) (The Row Space of Matrix) 

The set of all linear combination of the rows of A  ,and denoted by ( )row A  . 

 

(4.19) Theorem 

If two matrices A and B  are row equivalent, then their row space the same. 

If B  in echelon form the non-zero rows of B  form a basis for the row space of A as well as the form 

B  . 

 

(4.20) Example  

Find bases for the row space, the null space of the matrix: 

2 5 8 0 17 1 3 5 0 5

1 3 5 1 5 0 1 2 2 7
~

3 11 19 7 1 0 0 0 4 20

1 7 13 5 3 0 0 0 0 0

A A B

− − − −   
   

− − −   = =
   − −
   

− −   

 

 

Solution: 

( ) [(1,3, 5,1,5), (0,1, 2,2, 7), (0,0,0, 4,20)]Rwo A = − − − − . 
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| |6 

2 5 0

1 3 1
( ) , ,

3 11 7

1 7 5

Col A

 − −      
      
      =  
     
 
     
       

, to find ( )Null A ,we have to find the reduced echelon form of A . 

1 0 1 0 1

0 1 2 0 3
~ ~

0 0 0 1 5

0 0 0 0 0

A B C

 
 

− =
 −
 
 

, and 

1 3 5

2 3 5

4 5

0

2 3 0

0

x x x

x x x

x x

+ + =

− + =

− =

1 3 5

2 3 5

4 5

2 3

x x x

x x x

x x

= − −

 = −

=

   

3 51

3 52

3 3 3 5

4 5

5 5

1 1 1 1

2 3 2 3 2 3

1 0 ( ) 1 , 0 ,dim( ( )) 2

0 5 0 55

0 1 0 1

x xx

x xx

X x x X x x Basis for Null A Null A

x x

x x

− − − − − −          
          

− − −          
          = =  = + = =
          
          

          
          

. 

 

As a result, every system of linear equations has one of the following solutions: 

(i) There is no solution. 

(ii) There is a unique solution. 

(ii) There are more than one solution. 

 

5.Methods of solving system of linear Equations 

 

(5.1) (Direction method) 

 

(5.2) (Method of inversion) 

Consider the matrix equation A X B=  when 0A  ,then the system has a unique 

solution. Pre multiplying by 1A − , we have 
1 1( )A A X A B X− −= 1X A B− = . 

Thus A X B= , has only one solution if  0A  and is given by 
1X A B−= .  

(5.3) Example 

Use the inverse of the matrix A in example (3.6) to solve the system: 

1 2

1 2

3 4 3

5 6 7

x x

x x

+ =

+ =
 

 

Solution: 

This system is equivalent to A X B= , 
3 4

5 6
A

 
=  
 

, 
1

2

x
X

x

 
=  
 

, 
3

7
B

 
=  
 

,So that: 

1 11

2 2

3 2 3 2
3 4 3 3 5

, 5 3 5 3
5 6 7 7 3

2 2 2 2

x x
A

x x

−

− −   
             = =  = =              −− −          

   

. 
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− 

• 

• 
− 

• 

− 

− 

• 

(5.4) Example 

Solve the system:
1 2

1 2

2 6

4 2 8

x x

x x

+ =

+ =
  

Solution: 

 has not inverse ,hens cannot solution , then 
2 1

0
4 2

=But   ,
1

2

2 1 6
,

4 2 8

x
A X B

x

    
= = =    
    

 

by this method.  

 

(5.5) Example 

1 2 3

1 2 3

1 2 3

2 1

3 1

3 4 1

x x x

x x x

x x x

− + + =

− + =

− + + =

 Solve the system: 

Solution 

1

2

3

1 1 2 1

3 1 1 , , 1

1 3 4 1

x

A X x B

x

−     
    

= − = =    
    −    

1

1

2

3

1

57 2 3 7 2 3 1
1 1 4

13 2 7 13 2 7 1
10 10 5

8 2 2 8 2 2 1
4

5

x

A x

x

−

− 
 

− −        
−        = − −  = − − =        

      − −        
 
 
 

. 

(5.6) (Using Elementary row operations:(Gaussian Elimination) 

We list the basic steps of Gaussian Elimination, a method to solve a system of linear equations. 

Except for certain special cases, Gaussian Elimination is still of the art.”” After outlining the method, 

we will give some examples.                                                                                                                                

Gaussian elimination is summarized by the following three steps: 

1) Write the system of equations in matrix form. Form the augmented matrix. You omit the symbols 

for the variables, the equal signs, and just write the coefficients and the unknowns in a matrix. You 

should consider the matrix as shorthand for the original set of equations. 

2) Perform elementary row operations to get zeros below the diagonal. 

3) An elementary row operation is one of the following:  

a) multiply each element of the row by a non-zero constant. b) switch two rows. 

c) add (or subtract) a non-zero constant times a row to another row. 

4) Inspect the resulting matrix and re-interpret it as a system of equations. 

d) If you get 0 = a non-zero quantity then there is no solution. 

e) If you get less equations than unknowns after discarding equations of the form 0=0 and if there is 

a solution then there is an infinite number of solutions 

f) If you get as many equations as unknowns after discarding equations of the form 0=0 and if there 

is a solution then there is exactly one solution. 
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(5.6) Example 

Use Gaussian elimination to solve the system of linear equations:                                                                 

 

1 2

1 2

5 7

2 7 5

x x

x x

+ =

− − = −
 

Solution: 

We carry out the elimination procedure on both the system of equations and the corresponding 

augmented matrix, simultaneously. In general, only one set of reductions is necessary, and the latter 

(dealing with matrices only) is preferable because of the simplified notation.                               

.
1 5 7

2 7 5

 
  

− − − 
 

1 2

1 2

5 7

2 7 5

x x

x x

+ =

− − = −
 

Add twice row 1 to row 2
1 5 7

0 3 9

 
  

 
   

 

Multiply row 2 by 
1 5 71

0 1 33

 
  

 
. 

 

1 2

2

5 7

3

x x

x

+ =

=
   

1

2

8

3

x

x

= −

=
  

 

And we write the matrix by :
1 0 8

0 1 3

− 
 
 

   

(5.7) Example 

Use Gaussian elimination to solve the system of linear equations: 

2 3

1 2 3

1 2 3

2 8

2 3 0

2 3

x x

x x x

x x x

+ = −

− − =

− + + =

 

Solution: 

As before, we carry out reduction on the system of equations and on the                                                

augmented matrix simultaneously, in order to make it clear that row operations on equations 

correspond exactly to row operations on matrices.                                                                                        

0 2 1 8

1 2 3 0

1 1 2 3

− 
 

= − − 
 − 

2 3

1 2 3

1 2 3

2 8

2 3 0

2 3

x x

x x x

x x x

+ = −

− − =

− + + =
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1 2 3 0

0 2 1 8

1 1 1 2

− − 
 

= − 
 − 

 Row 2: and Row 1 Swap 

 

1 2 3 0

0 2 1 8

0 1 1 3

− − 
 

= − 
 − − 

: Row 3 to Row 1 Add 

 

1 2 3 0

0 1 1 8

0 2 1 3

− − 
 

= − − − 
 
 

 3: Row and2  Row Swap 

 

Add twice Row 2 to Row 3: 

1 2 3 0

0 1 1 3

0 0 1 2

− − 
 

= − − 
 − − 

 

 

Add -1 times Row 3 to Row 2, add -3 times Row 3 to Row 1: 

1 2 0 6

0 1 0 5

0 0 1 2

− 
 

= − 
 − − 

 

1 0 0 4

0 1 0 5

0 0 1 2

− 
 

= − 
 − − 

 2 times Row 2 to Row 1:-Add  

 

 

Multiply Row 2 and Row 2 by -1: 

1 0 0 4

0 1 0 5

0 0 1 2

− 
 

= − 
 
 

 

 

1 2 34 , 5 , 2x x x = − = − = . 

(5.8) Example 

6

2 3

4

x y z

x y z

x z

+ + =

− + =

+ =

 .  
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— − 

— − 

− 

First form the augmented matrix:

1 1 1 6

2 1 1 3

1 0 1 4

 
 

− 
 
 

   

Next add -2 times the first row to the second row and then add -1 times the first row to the third row: 

1 1 1 6

0 3 1 9

1 1 1 2

 
 

= − − − 
 − − 

 

Next multiply the second row by -1 and the third row by -1, just to get rid of the minus signs. Then 

switch the second and third rows: 

1 1 1 6

0 1 0 2

0 3 1 9

 
 

=  
 
 

 

 

Now add -3 times the second row to the third row, so we have all zeros below the diagonal:                     

1 1 1 6

0 1 0 2

0 3 1 3

 
 

=  
 
 

. 

Now re-interpret the augmented matrix as a system of equations, starting at the bottom and working 

.0 0 3 3x y z z+ + =  =  The bottom equation is  backwards (this is called back substitution).   

                                                                        .0 0 2 2x y z y+ + =  = is equation bottom the to next The 

into  2y =and  3z =.Substitute the values  6x y z+ + =The next equation (the top one) is 

                                                                                                                            .1x =the equation and get  

                                                                                                                     

Factorization QRThe 6. 

 .malorthonor is column their if matrix orthogonal an called we matrix a be A Let 

 

(6.1) An orthonormal 

i) orthogonal with any either column.  

ii) norm of any column is equal one. 

 

Note: 

We use this factorization if column of matrix is linearly independent.                                                           

 to a triangular one. system linear a reduce to again is factorization QR the of idea main The

However, the matrix is not factorized as the product of two triangular matrices (as previously), but 

, which, by Qan orthogonal (unitary) matrix  as the product of an upper triangular matrix R and

 .
1Q Q− =to invert, since  definition, is easy 

steps. three in proceed we Ax b= system linear the solve to order In 

triangular.is upper  Q A R = such that  Qfinding an orthogonal matrix  i) Factorization: 
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.Q b
 computing side: hand-right the ii) Updating 

.R x Q b= system triangular the solving substitution: iii) Back 

guaranteed isQ matrix orthogonal an such of existence the singular,-non is A If 

by the following result, for which we give a constructive proof by the Gram- Schmidt             

orthonormalization process.                                                                                                                                 

 

(6.2) QR factorization via Gram-Schmidt 

as: A QR=factorization  the QR down formally writing start by we 

1

1 1 11 1

11

(6)
a

a q r q
r

=  = 

2 1 12

2 1 12 2 2 2 2

2 2

(7)
a q r

a q r q r q
r

−
= +  = 

1 2 2 ......... (8)
n ii n

n n n n n n n

n n

a q
a q r q r q r q

r

−
= + + +  =


 

Note that is these formula the column ja of A  are given and we want to determine the column jq  of  Q and 

entries i jr  such that  Q is orthonormal. 

(9)i j i jq q s =  

Rthe latter two condition are already .A QR=is upper triangular and  

 reflected in the formulas above. 

Using (6) in the orthogonality condition (9) we get: 

1 1

1 1 2

1 1

1 (10)
a a

q q
r



 = = 

So that: 

1 1 1 1 1 2
(11)r a a a= =  

Note that we arbitrarily chose the positive root here (so that the factorization becomes unique). 

Next, the orthogonality condition (9) give us:                                                                                                      

1 2 2 20 , 1 (12)q q q q = =  

Now we apply (7) to the first of these two condition. Then: 

1 2 1 2 1 1

1 2

2 2

0 (13)
q a r q q

q q
r

 


−

= = 

that:so   1 2 1 2r q a= yields number the step previous the in 1 1 1q q = ensured we Since 

2 1 2 1

2

2 2

( )
(14)

a q a q
q

r

−
= 



Nat. Volatiles & Essent. Oils, 2021; 8(6): 5284-5302 
 

 

5297 
 

equivalently .This immediately  2 2
1q =or  2 2 1q q =we normalize demand that 2 2rTo find 

gives: 

2 2 2 1 2 1 2
( ) (15)r a q a q= − 

).3n = (for step more one add we proceeds algorithm the how understand fully To 

Now we have three orthogonality condition: 

1 3 2 3 3 3 0 (16)q q q q q q  = = = 

yields:) 3n =for ( (8) together with condition of these first The 

1 3 1 3 2 3 2 3 2 2

1 3

3 3

0 (17)
q a r q q r q q

q q
r

  


− −

= = 

 second the ,Similarly .2q and 1q columns of orthogonality the to due 1 3 1 3r q a= that so

:yields )3n =( for(8)  with together condition orthogonality 

2 3 1 3 2 1 2 3 2 2

2 3

3 3

0 (18)
q a r q q r q q

q q
r

  


− −

= = 

So that: 3 3 2 3r q a=    

Together this give us:  

3 1 3 1 2 3 2

3

3 3

( ) ( )
(19)

a q a q q a q
q

r

 − −
=  

normalization by determined is , 3 3r unknown last the and 

3 3 3 1 3 1 2 3 2 2
( ) ( ) (20)r a q a q q a q = − − 

 

(6.3) Theorem  

nis of full rank( A, if  Moreover . factorization a QRhas A Then . m n with 
mA C n  Let

                                                         is unique . 0j jr with  A QR= factorization) , then the reduced  

 

(6.4) Example 

the matrix : factorization for QRcompute the  We 

1 2 0

0 1 1

1 0 1

A

 
 

=  
 
 

 

First 1 1v a= =

1

0

1
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1 1 1 2r v= = ,this us next  
1

1

1

v
q

v
= and 2 2 1 2 1

2 1
2

1 1
2

0 1

v a q a q

   
   

= − = − =   
   −   

.Thus calculation required 

that 1 2

2
2

2
r = =  , and 

2

2

2

1
1

1
3

1

v
q

v

 
 

= =  
 − 

. 

In the third iteration we have 3 3 1 3 1 2 3 2( ) ( )v a q a q q a q = − − , from which we first compute 
1 1

1

2
r = and 

3 3 0r =  .This gives us 
3

0 1 1
1 1 1

1 0 0 2
22 2

1 1 1

v

−     
     

= − − =     
     
     

.Finally,  and 3 3 3

6

2
r v= =   

.Collecting all of the information we end up with 3

3

3

1
1

2
6

1

v
q

v

− 
 

= =  
 
 

 

1 1 1 1
2 2

2 3 6 2
1 2

0 , 0 3 0
3 6

6
1 1 1 0 0

2
2 3 6

Q R

 −
  
  
  
 = = 
  
  −     

 

. 

 

7.An Application of the QR  Factorization  

Consider solution of the liner system  Ax b= with  
m mA C  nonsingular . Since

Ax b QRx b Rx Q b•=  =  = ,where the last equation holds since Q  is unitary , we can 

proceed as follows: 

1-Compute A QR=  (which is the same as 
/ /A Q R=  in this case ). 

2- Compute y Q b•= . 

3- Solve the upper triangular Rx y= . 

We will have more application for the QR factorization in the context of least squares problems. 

 

(7.1) Example 

Using the  QR factorization to solve the following system Ax b= : 

1 2 3

1 2

2 3

2 3

1

2 5

x x x

x x

x x

− + = −

− + =

− + =
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Solution 

1 1 2 3

1 1 0 , 1

0 2 1 5

A b

− −   
   

= − =   
   −   

, then 

1 1
0

2 2 2 2 2
1 1

0 , 0 2 1
2 2

0 0 2
0 1 0

Q R

 
 

 − 
  

= − = −  
  
 − 

 
 

, Since 

 
TAx b Rx Q=  =  ,let 

TQ b y= then 

1 1
0

32 2

0 0 1 1

1 1 5
0

2 2

TQ b y

 
−  − 

   
= = −   

   
  

 
 

 , to solve 

Rx y=  

 

1

2 3 3

3

2 3 2 1 2 3 1

4
2 2 2

1 5 2
0 2 1 2 2 1

2 2 2
0 0 2

2

5 1
2 ( ) 3, 2 2 2 4 4

22

x

x x x

x

x x x x x x x

−  −      −   − =  =  = −        
    − 

 
− = −  = − − + = −  = − 

 

 

 

8.Numerical Implementation  

In this section we study algorithm of Gaussian elimination, and compare the solution of liner equation Ax b=  

between hand calculus and by the algorithm for this decomposition. 

 

(8.1) Matlab Function of Gaussian Elimination 

function x = gauss (A, b) 

[n,n] = size (A); 

[n,k] = size (b); 

x=zero(n,k); 

for i=1: n-1 

m=-A (i+1: n, i) / A (i, i); 

A (i+1: n, :)=A (i+1: n, :)+m*A (i, :) 

b (i+1: n :)+m*b (i, :); 

end 

end 

let 
1 5 7

,
2 7 5

A b
   

= =   
− − −   

 , we solve this system Ax b= by above a logarithm , we obtained : 

 

(8.2) Example 
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>> A= [1,5;2,-7]; 

>> b= [7;-5]; 

>>x=gauss(A,b) 

x= 

       15.33 

      -1.6667 

But by hand calculus 
8

3
x

− 
=  
 

  

9. Matlab function of the QR  Factorization 

(9.1) Code of QR : 

function x= [Q, R] = myqr (A) 

[m, n] = size (A); 

R = zeros (n); 

Q=A; 

for k=1: n 

    for i = 1: k-1 

R (i, k) = Q (k) – R (i, k) * Q (k); 

end 

R (k, k) = norm (Q (: k)); 

Q (: k) =Q (: k) * R (k, k); 

end 

end 

If Ax b= . Let A QR=  ,then Ax b QRx b=  =  , Q orthogonal matrix ( 1TQ Q−= ), TRx Q b=

,let TC Q b=  , R is upper triangle matrix 

11 12 1 1 1

2 2 2 2 2

....

0 .....
,

. .. . ..... .

0 0 0

n

n i i j j

i

i i

n nn n

r r r x c

r r c r xx c
Rx c x

r

x cr

     
     

−     = = = =     
     
      


. 

 

(9.2) Code of Solution of System Ax b= by the QR Factorization  

function x= solqr (A, b)  

[Q, R] myqr (A); 

C = transpose (Q) *b; 

[m, n] = size (A); 

X (n) = c (n) / R (n, n); 

for i = n-1: -1: 1 

        sum = 0; 

        for j=i+1: n 

              sum = sum + (R (i, j) * x (j)); 

        end 

        x (i) = (c (i) – sum / R (i, i)); 
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end 

 

end 

 

(9.3) Example 

Use above logarithm to obtain Q and R  , let 

1 1 2 3

1 1 0 , 1

0 2 1 5

A b

− −   
   

= − =   
   −   

 and solve Ax b= . 

Solution 

>> A= [1, -1,2; -1,1,0;0, -2,1]; 

>> b = [-3;1;5]; 

>> [Q, R] = myqr (A) 

Q =  

 

    1.4142    -2.4495      4.4721 

   -1.4142     2.4495               0 

             0               0      2.2361 

 

R =  

 

      1.4142      -1.4142             0 

               0       2.4495              0 

               0                0     2.2361 

 

 

>> x = solqr (A,b) 

x =  

     -0.2400      -0.1667    -1.0000 

 

And by calculus hand: 

 

1 1
0

2 2 2 2 2 4
1 1

0 , 0 2 1 , 3
2 2

10 0 2
0 1 0

Q R x

 
 

 −  − 
    

= − = − = −    
     −  − 

 
 

 

 

Conclusion 

Includes research on the definition of a system of linear and nonlinear ways of solving linear and we 

 the called we case this inthis case is b=0. in Ax b= system the of case special a about talked

system is homogeneous linear system.                                                                                                                 
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− 

 Method including this method is direct Ax b=And we also talked about ways to solve the system 

                                    matrix the of analysis the is direct -in anther and elimination nGaussia and inverses ion of

                                                                                                                factorization.QRlike  ways many with 

And to talked about algorithm for some ways to solve the system and your comparing between the 

solution of this system through algorithms and calculation method by hand and we find a few 

difference between him. 
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