
Nat. Volatiles & Essent. Oils, 2021; 8(5): 13327-13338 
 

13327 
 

 

 

Optimization Of Fuzzy Integrated Inventory Model Using 

Triangular And Pentagonal Fuzzy Number  
 

F.S.Josephine  , A. Saranya  & I. Francina Nishandhi  

 

Department of Mathematics, Holy Cross College (Autonomous), Tiruchirappalli, Tamil Nadu. 

 

Abstract: 

Inventory is one of the most expensive and important assets to many companies. In this paper, inventory model 

for both buyer and vendor are considered together under fuzzy situation and whose parameters are different fuzzy 

numbers. Aim is to minimize the integrated total cost function. Signed distance method and Graded Mean 

integration method are used for defuzzification process. A numerical example is given to demonstrate this method. 
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1. INTRODUCTION 

In traditional inventory management systems, the economic-lot-size (ELS) for a vendor and a purchaser 

are managed independently, that is, the vendor finds their own optimal order quantity. As a result, the 

ELS of purchaser may not result in an optimal policy for the vendor and vice versa. To overcome this 

problem, researchers have studied joint economic lot size (JELS) model where the joint total relevant 

cost (JTRC) for the purchaser as well as the vendor has been optimized. Goyal [1] first introduced an 

integrated inventory policy for a single supplier and a single customer and derived the minimum joint 

variable cost for the supplier and the customer. Banerjee [2] introduced the JELS model for a single 

vendor and a single customer and obtained the minimum joint total relevant cost for both buyer and 

vendor at the same time with the assumption that the vendor makes the production set up every time 

the buyer places an order and supplies on a lot for lot basis. An integrated inventory model that allows 

the two trading partier to form a strategic alliance for profit sharing may prove helpful in treating down 

the traditional barrier. 

Various types of uncertainties and imprecision is inherent in real problems. They are classically 

modeled using the approaches from the probability theory. However, there are uncertainties that 

cannot be appropriately treated by usual probabilistic models. The question arise how to define 

inventory optimization tasks in such environment and how to interpret optimal solutions. Therefore it 

becomes move convenient to deal such problems with fuzzy set theory rather than probability theory. 

Fuzzy concepts have introduced in EOQ models. Park developed a fuzzy EOQ model using extension 

principle. In 1999, Chang presented a membership function of the fuzzy total cost of production 

inventory model and use extension principle and centroid method to obtain an estimate of the total cost 

and to obtain an estimate of the total cost and to obtain the economic production quantity. 
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2. PRELIMINARIES  

 

2.1 Fuzzy set 

Let A be a classical set, µĀ(x) be a function from A to[0,1]. A fuzzy set Ā with the membership function 

µĀ(x) is defined by  

                Ā = {x, µĀ(x)); xϵA, µĀ(x) ϵ[0,1] }. 

 

2.2 Fuzzy Number 

A fuzzy subset of real number with membership function μÃ : R → [0,1] is called a fuzzy number if 

1. Ã is normal, that is there exists an element X0 such that  μÃ (x0) = 1 

2. Ã is convex that is  μÃ (λx1 + (1-λ) x2 ) ≥ μÃ(x1) ^ μÃ (x2) ∀ x1 , x2 ϵ R & λ ϵ [0,1] 

3. μÃ is upper semi continuous; 

4. Supp (Ã) is bounded, here  Supp(Ã) = supp {X ϵ R : μÃ (x) > 0}. 

 

2.3 Triangular Fuzzy number 

A fuzzy number Ã= (a1 , a2 , a3 )   with a1< a2< a3 is triangular if its membership function is 

defined as  

 
x−a1

a2−a1
,   when a1  ≤ x ≤  a2 

                                       μÃ (x) =     
a3−  x

a3− a2
,   when  a2 ≤  x ≤  a3  

              0          otherwise 

2.4 Pentagonal Fuzzy Number 

A pentagonal fuzzy number Ã= (a,b,c,d,e) is represented with membership function μÃ (x) as 

 

      
x−a

b−a
 , when a ≤ x ≤ b 

      
x−b

c−b
 , when b ≤ x ≤ c  

    μÃ (x) =    1   ,when  x=c 

      
d−x

d−c
 , when c≤  x  ≤ d 

                                                                   
e−x

e−d
 , when d ≤ x ≤ e 

      0       otherwise 

 

2.5 Fuzzy arithmetical operations in Triangular Fuzzy number 

Suppose Ã = (a1, a2, a3) and  B̃ = (b1, b2, b3) are triangular fuzzy numbers then the arithmetical operations 

are defined as 

i. Addition  

Ã + B̃  = (a1  + b1, a2 + b2 , a3 + b3 ) 

ii. Subtraction 

A ̃ - B̃  = (a1- b3, a2-b2, a3-b1) 

iii. Multiplication 

Ã × B̃ = (a1b1, a2b2, a3b3)  
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iv. Division 

Ã     B̃  = (
a1

b3
,

a2

b2
,

a3

b1
)   

v. Scalar multiplication 

α ×  Ã   =  {
(αa1, αa2, αa3) , α ≥ 0   
(αa3, αa2, αa3) ,    α <   0

}   

 

2.6 Defuzzification: 

Let Ã be a fuzzy set defined on R. then the signed distance of Ã is defined as , 

dF(Ã, 0) = 
a1+2a2+ a3

4
 for defuzzifying triangular fuzzy number Ã= (a1 , a2 , a3 ).  

Graded mean integration representation for defuzzifying the Pentagonal fuzzy number Ã= (a1 , 

a2 , a3, a4 ,a5) is defined as dF (Ã) = 
a1+3a2+ 4a3+ 3a4+ a5

12
 

 

3. CRISP INTEGRATED INVENTORY MODEL 

This section gives the classical integrated inventory model for both buyer and vendor. 

 

3.1 Assumption and Notations: 

Following assumption and notation are considered  

    3.1.1     Assumptions: 

1) The demand rate and production rate production rate are deterministic. 

2) Manufacturing set up cost ,ordering cost  , unit inventory holding cost for the vendor and the 

buyer’s ,are known 

Single vendor and single buyer are considered 

3) There is a single product 

4) Shortage are allowed  

5) The vendor makes the production set up every time the buyer places an order and supplies on a 

lot for lot basis. 

3.1.2 Notations 

d   : demand  

Pr : Rate of production  

Cv : The production cost per unit 

Pc : The purchase cost paid by the purchaser per unit 

A: The purchaser’s ordering cost per order 

Sv : The vendor’s set up cost per set up 

r :  Annual inventory carrying cost per dollar 

q: The order quantity 

 

3.2 THE MODEL FORMULATION 
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Based on the above notation and assumption, the total expected annual cost for the purchaser is given 

by   TEPc= Ordering cost + Holding cost 

Since A is the ordering cost per order, the expected ordering cost per year is given by (
d

q
)A. The 

expected holding cost per year is   rpc (
q

2
).   Hence the total expected annual cost for the purchaser is 

given by                              TEPc  (q)=(
d

q
)A+rpc (

q

2
). 

For the vendor’s inventory model, its expected annual cost can be represented by 

                                   TEVc = Set-up cost + Holding cost. 

Since the vendor’s setup cost per up and the production quantity for the vendor in a lot will be mq, its 

expected set up cost per year is given by(
d

mq
) Sv. Here we consider m=1, where m is an integer          

 Hence its expected set up cost per year in given by(
d

q
) Sv.  

The vendor produces the item in the quantity of mq, and the Purchaser would receive it m lots, with 

which each having a quantity of q.  

Average inventory cost for vendor is as follows, 

 Iv =
{[mq (

q
Pr

+ (m − 1)
q
d

) −
m2q2

2Pr
] − [

q
d

(1 + 2 + ⋯ + (m − 1)q)]}

mq
d

 

             =
q

2
(m (1 −

d

Pr
) − 1 +

2d

Pr
) 

Since m=1  We have the vendor’s holding cost per year is     rVc (
q

2
) (

d

Pr
) 

Hence the total expected annual cost for the vendor is TEVc = (
d

q
) Sv + rVc (

q

2
) (

d

Pr
) 

Hence the joint relevant cost is given by F(q) = (
d

q
) (Sv + A) +

qr

2
(

d

Pr
Vc + Pc) 

The objective is to find the optimal order quantity which minimizes the joint relevant total cost. 

 On considering the derivative with respect to q and equated to zero we get,  

q = √
2d(Sv + A)

r (
d
Pr

Vc + Pc)
 

 

4. FUZZY INTEGRATED INVENTORY MODEL WITH FUZZY ORDER QUANTITY  

4.1 Fuzzy Integrated Inventory Model with Fuzzy Order Quantity using Triangular Fuzzy     

       Number 
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In this section, we consider the integrated inventory model with all parameters as fuzzy and they are 

represented by non-negative triangular fuzzy numbers as follows. 

d̃ = (d1, d2, d3)              S̃v =(Sv1
, Sv2

, Sv3
)            Vc̃=(Vc1

, Vc2
, Vc3

)          P̃r=(Pr1
, Pr2

, Pr3
) 

   P̃c = (Pc1
, Pc2

, Pc3
)         Ã  =(A1, A2, A2)               r ̃ = (r1, r2, r3)   

Also the order quantity is represented by the triangular fuzzy number q̃=(q1, q2, q3) with  

 0≤ q1 ≤ q2 ≤ q3. 

Fuzzy total cost for purchaser =  [(d̃ ⊘ q̃) ⊗ Ã] ⊕ [r ̃ ⊗ P̃c ⊗
q̃

2
] 

Fuzzy total cost for vendor     =  [(d̃ ⊘ q̃) ⊗ S̃v] ⊕ [
q̃

2
⊗ r̃ ⊗ Ṽc(d̃  ⊘ P̃r)]  

 The fuzzy total relevant cost of this model is  

F̃(q̃)==  [(d̃ ⊘ q̃) ⊗ (S̃v ⊕ Ã)] ⊕ [
q̃

2
⊗ r̃ ⊗ (d̃  ⊘ P̃r)⨂Ṽc ⊕ P̃c] 

 Which is reduced to triangular fuzzy number F̃(q̃) = (F1, F2, F3)   Where                                                       

F1 =
d1 (Sv1

+ A1)

q3
+

q1r1

2
(

d1Vc1

Pr3

+ Pc1
)          F2 =

d2 (Sv2 
+ A2)

q2
+

q2r2

2
(

d2Vc2

Pr2

+ Pc2
) 

F3 =
d3 (Sv3 

+ A3)

q1
+

q3r3

2
(

d3Vc3

Pr1

+ Pc3
) 

After defuzzifying F̃(q̃) by signed distance method we get  P[F̃(q̃)] =
1

4
[F1 + 2F2 + F3] 

   

=
1

4
{[

d1 (Sv1
+ A1)

q3
+

q1r1

2
(

d1Vc1

Pr3

+ Pc1
) + 2 [

d2 (Sv2 
+ A2)

q2
+

q2r2

2
(

d2Vc2

Pr2

+ Pc2
)]

+ [
d3 (Sv3 

+ A3)

q1
+

q3r3

2
(

d3Vc3

Pr1

+ Pc3
)]]} 

     Now differentiating P[F̃(q̃)] partially with respect to q1 and equate to zero we get, 

 

∂(P[F̃(q̃)])

∂q1
=     

1

4
[
−d3 (Sv3 

+ A3)

q1
2 +

r1

2
(

d1Vc1

Pr3

+ Pc1
)] 

                     
∂(P[F̃(q̃)])  

∂q1
= 0   We get, q1 = √

2d3 (Sv3 +A3)

r1(
d1Vc1

Pr3
+Pc1)

 

Similarly we obtain,q2 = √
2 d2(Sv2 +A2)

r2(
d2Vc2

Pr2
+Pc2)

       and  q3 = √
2d1 (Sv1+A1)

r3(
d3Vc3

Pr1
+Pc3)
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 We see that q1>q2>q3 hence it does not satisfy the constraint 0<q1 ≤ q2 ≤ q3. 

 Hence we adopt the Lagrangian method to find the solution of q1, q2 and q3  

 So we convert the inequality constraint q2 − q1 ≥ 0 in to the equality constraint q2 − q1 = 0  and then 

minimize P[F̃(q̃)] subject to q2 − q1 = 0.we have the lagrangian function as  

L(q1, q2 , q3, λ) = P[F̃(q̃)] − λ(q2 − q1)     Where, λ are the Lagrangian Multipliers 

Differentiate partially with respect to q and equate to zero we get, 

∂L

∂q1
=  

1

 4
[
−d3 (Sv3 

+ A3)

q1
2 +

r1

2
(

d1Vc1

Pr3

+ Pc1
)] + λ 

∂L

∂q2
=

2

4
[
−d2 (Sv2 

+ A2)

q2
2 +

r2

2
(

d2Vc2

Pr2

+ Pc2
)] − λ 

∂L

∂q3
=

1

4
[
−d1 (Sv1

+ A1)

q3
2 +

r3

2
(

d3Vc3

Pr1

+ Pc3
)] 

∂L

∂λ
= q2 − q1 

Equating to zero we get, 

q1 = q2 = √

2[d3 (Sv3 
+ A3) + 2d2 (Sv2 

+ A2)]

r1 (
d1Vc1

Pr3

+ Pc1
) + 2r2 (

d2Vc2

Pr2

+ Pc2
)

                      q3 = √

2d1 (Sv1
+ A1)

r3 (
d3Vc3

Pr1

+ Pc3
)

 

L(q1, q2 , q3, λ) = P[F̃(q̃)] − λ(q2 − q1) − λ(q3 − q2) 

∂L

∂q1
=

1

 4
[
−d3 (Sv3 

+ A3)

q1
2 +

r1

2
(

d1Vc1

Pr3

+ Pc1
)] + λ 

∂L

∂q2
=

2

4
[
−d2 (Sv2 

+ A2)

q2
2 +

r2

2
(

d2Vc2

Pr2

+ Pc2
)] − λ + λ 

∂L

∂q3
=

1

4
[
−d1 (Sv1

+ A1)

q3
2 +

r3

2
(

d3Vc3

Pr1

+ Pc3
)] − λ 

Equating to zero we get, 

q1 = q2 = q3 = q∗ = √

2[d3 (Sv3 
+ A3) + 2d2 (Sv2 

+ A2) + d1 (Sv1
+ A1)]

r1 (
d1Vc1

Pr3

+ Pc1
) + 2r2 (

d2Vc2

Pr2

+ Pc2
) + r3 (

d3Vc3

Pr1

+ Pc3
)

 

Hence we can get q∗ is an optimal solution to problem. 

4.2 Fuzzy Integrated Inventory Model with Fuzzy Order Quantity using Pentagonal Fuzzy  Number 
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In this section, we consider the integrated inventory model with all parameters as fuzzy and 

they are represented by non-negative Pentagonal fuzzy numbers as follows. 

d̃=(d1, d2, d3, d4, d5)           S̃v =(Sv1
, Sv2

, Sv3
, Sv4

, Sv5
)                                 Vc̃=(Vc1

, Vc2
, Vc3,Vc4

, Vc5,)                                                     

P̃r=(Pr1
, Pr2

, Pr3
, Pr4

, Pr5
)    P̃c = (Pc1

, Pc2
, Pc3

, Pc4
, Pc5

)   Ã =(A1, A2, A2, A4, A5)    r ̃ = (r1, r2, r3, r4, r5)   

Also the order quantity is represented by the pentagonal fuzzy number q̃=(q1, q2, q3, q4, q5) with  

 0≤ q1 ≤ q2 ≤ q3 ≤ q4 ≤ q5. 

Fuzzy total cost for purchaser =  [(d̃ ⊘ q̃) ⊗ Ã] ⊕ [r ̃ ⊗ P̃c ⊗
 q̃

2
] 

Fuzzy total cost for vendor     =  [(d̃ ⊘ q̃) ⊗ S̃v] ⊕ [
q̃

2
⊗ r̃ ⊗ Ṽc(d̃  ⊘ P̃r)]  

 The fuzzy total relevant cost of this model is  

F̃(q̃)==  [(d̃ ⊘ q̃) ⊗ (S̃v ⊕ Ã)] ⊕ [
q̃

2
⊗ r̃ ⊗ (d̃  ⊘ P̃r)⨂Ṽc ⊕ P̃c] 

 Which is reduced to pentagonal fuzzy number F̃(q̃) = (F1, F2, F3, F4, F5) Where                                                        

F1 = [
d1 (Sv1

+ A1)

q5
+

q1r1

2
(

d1Vc1

Pr5

+ Pc1
)]         F2 = [

d2 (Sv2 
+ A2)

q4
+

q2r2

2
(

d2Vc2

Pr4

+ Pc2
)] 

F3 = [
d3 (Sv3 

+ A3)

q3
+

q3r3

2
(

d3Vc3

Pr3

+ Pc3
)]          F4 = [

d4 (Sv4 
+ A4)

q2
+

q4r4

2
(

d4Vc4

Pr2

+ Pc4
)] 

F5 = [
d5 (Sv5 

+ A5)

q1
+

q5r5

2
(

d5Vc5

Pr1

+ Pc5
)] 

P[F̃(q̃)] =
1

12
 (F1 + 3F2 + 4F3 + 3F4 + F5) 

=
1

12
[
d1 (Sv1

+ A1)

q5
+

q1r1

2
(

d1Vc1

Pr5

+ Pc1
)] +

3

12
[
d2 (Sv2 

+ A2)

q4
+

q2r2

2
(

d2Vc2

Pr4

+ Pc2
)] 

+
4

12
[
d3 (Sv3 

+ A3)

q3
+

q3r3

2
(

d3Vc3

Pr3

+ Pc3
)] +

3

12
[
d4 (Sv4 

+ A4)

q2
+

q4r4

2
(

d4Vc4

Pr2

+ Pc4
)]

+
1

12
[
d5 (Sv5 

+ A5)

q1
+

q5r5

2
(

d5Vc5

Pr1

+ Pc5
)] 

Differentiate with respect to q1 and equating to zero we get, 

∂(P[F̃(q̃)])

∂q1
=

1

12
[
−d5 (Sv5

+ A5)

q1
2 +

r1

2
(

d1Vc1

Pr5

+ Pc1
)] 

1

12
[

−d5 (Sv5
+A5)

q1
2 +

r1

2
(

d1Vc1

Pr5

+ Pc1
)] = 0    we get       q1 = √

2d5 (Sv5 
+A5)

r1(
d1Vc1

Pr5
+Pc1)
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Similarly, we get  

 q2 = √
2d4 (Sv4+A4)

r2(
d2Vc2

Pr4
+Pc2)

     q3 = √
2d3 (Sv3 +A3)

r3(
d3Vc3

Pr3
+Pc3)

      q4 = √
2d2 (Sv2 

+A2)

r4(
d4Vc4

Pr2
+Pc4)

      q5  = √
2d1 (Sv1 

+A1)

r5(
d5Vc5

Pr1
+Pc5

)
 

We see that q1>q2>q3 > q4>q5 hence it does not satisfy the constraint 0<q1 ≤ q2 ≤ q3 ≤ q4 ≤ q5. 

Hence we adopt the Lagrangian method to find the solution of q1, q2, q3, q4 and q5. 

 So we convert the inequality constraint q2 − q1 ≥ 0 in to the equality constraint q2 − q1 = 0 and then 

minimize P[F̃(q̃)] subject to q2 − q1 = 0.we have the lagrangian function as  

L(q1, q2 , q3, λ) = P[F̃(q̃) −]λ(q2 − q1)   Where λ is  the  Lagrangian multipliers  

DifferentiateF̃(q̃) partially with respect to q and equate to zero we get, 

∂L

∂q1
=

1

 12
[
−d5 (Sv5

+ A3)

q1
2 +

r1

2
(

d1Vc1

Pr5

+ Pc1
)] + λ 

∂L

∂q2
=

3

12
[
−d4 (Sv4 

+ A4)

q2
2 +

r2

2
(

d2Vc2

Pr4

+ Pc2
)] − λ 

∂L

∂q3
=

1

4
[
−d3 (Sv3

+ A3)

q3
2 +

r3

2
(

d3Vc3

Pr3

+ Pc3
)]      

∂L

∂q4
=

1

4
[
−d2 (Sv2

+ A2)

q4
2 +

r4

2
(

d4Vc4

Pr2

+ Pc4
)] 

∂L

∂q5
=

1

4
[
−d1 (Sv1

+ A1)

q5
2 +

r5

2
(

d5Vc5

Pr1

+ Pc5
)] 

∂L

∂λ
= q2 − q1 

 Equating to zero we get, 

q1 = q2 = √

2 (d5 (Sv5 
+ A5) + 3d4 (Sv4

+ A4))

r1 (
d1Vc1

Pr5

+ Pc1
) + 3r2 (

d2Vc2

Pr4

+ Pc2
)

 

q3 =
√

2d3 (Sv3 
+ A3)

(r3 (
d3Vc3

Pr3

+ Pc3
))

     q4 = √

2d2 (Sv2 
+ A2)

r4 (
d4Vc4

Pr2

+ Pc4
)

         q5  = √

2d1 (Sv1 
+ A1)

r5 (
d5Vc5

Pr1

+ Pc5
)

 

 

Now the Lagrangian function with multipliers λ1 and  λ2. 

L(q1, q2 , q3, q4, q5 ,λ) = P[F̃(q̃)] − λ1(q2 − q1) − λ2(q3 − q2) 

We can obtain a solution from differentiating   L(q1, q2 , q3, q4, q5 ,λ1 , λ2) with respect to q   and  

equating  to zero we get, 
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Now the Lagrangian function with multipliers  λ1 , , λ2 and λ3 

∂L

∂q1
=

1

 12
[
−d5 (Sv5

+ A3)

q1
2 +

r1

2
(

d1Vc1

Pr5

+ Pc1
)] + λ1 

∂L

∂q2
=

3

12
[
−d4 (Sv4 

+ A4)

q2
2 +

r2

2
(

d2Vc2

Pr4

+ Pc2
)] −λ1 + λ2 

∂L

∂q3
=

1

4
[
−d3 (Sv3

+ A3)

q3
2 +

r3

2
(

d3Vc3

Pr3

+ Pc3
)] − λ2 

∂L

∂q4
=

1

4
[
−d2 (Sv2

+ A2)

q4
2 +

r4

2
(

d4Vc4

Pr2

+ Pc4
)]       

∂L

∂q5
=

1

4
[
−d1 (Sv1

+ A1)

q5
2 +

r5

2
(

d5Vc5

Pr1

+ Pc5
)] 

∂L

∂λ
= q2 − q1;  

∂L

∂λ2
= q3 − q2 

q1 = q2 = q3 = √

2 (d5 (Sv5 
+ A5) + 3d4 (Sv4

+ A4) + 4d3 (Sv3 
+ A3))

r1 (
d1Vc1

Pr5

+ Pc1
) + 3r2 (

d1Vc1

Pr4

+ Pc2
) + 4r3 (

d3Vc3

Pr3

+ Pc3
)

 

q4 = √

2d2 (Sv2 
+ A2)

r4 (
d4Vc4

Pr2

+ Pc4
)

                                                         q5  = √

2d1 (Sv1 
+ A1)

r5 (
d5Vc5

Pr1

+ Pc5
)

 

L(q1, q2 , q3, q4, q5 ,λ) = P[F̃(q̃)] − λ1(q2 − q1) − λ2(q3 − q2) − λ3(q4 − q3) 

We can obtain a solution from differentiating L(q1, q2 , q3, q4, q5 ,λ1 , λ2, λ3) with respect to q and 

equating to zero we get, 

∂L

∂q1
=  

1

 12
[
−d5 (Sv5

+ A3)

q1
2 +

r1

2
(

d1Vc1

Pr5

+ Pc1
)] + λ1 

∂L

∂q2
=

3

12
[
−d4 (Sv4 

+ A4)

q2
2 +

r2

2
(

d2Vc2

Pr4

+ Pc2
)] − λ1 + λ2 

∂L

∂q3
=

1

4
[
−d3 (Sv3

+ A3)

q3
2 +

r3

2
(

d3Vc3

Pr3

+ Pc3
)] − λ2 + λ3 

∂L

∂q4
=

1

4
[
−d2 (Sv2

+ A2)

q4
2 +

r4

2
(

d4Vc4

Pr2

+ Pc4
)] − λ3 

∂L

∂q5
=

1

4
[
−d1 (Sv1

+ A1)

q5
2 +

r5

2
(

d5Vc5

Pr1

+ Pc5
)] 
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∂L

∂λ
= q2 − q1 ;

∂L

∂λ2
= q3 − q2 ;

∂L

∂λ3
= q4 − q3 

 

q1 = q2 = q3 = q4 = √

2 (d5 (Sv5 
+ A5) + 3d4 (Sv4

+ A4) + 4d3 (Sv3 
+ A3) + 3d2 (Sv2 

+ A2))

r1 (
d1Vc1

Pr5

+ Pc1
) + 3r2 (

d2Vc2

Pr4

+ Pc2
) + 4r3 (

d3Vc3

Pr3

+ Pc3
) + 3r4 (

d4Vc4

Pr2

+ Pc4
)

 

q5  = √

2d1 (Sv1 
+ A1)

r5 (
d5Vc5

Pr1

+ Pc5
)

 

Now the Lagrangian function with multipliers λ1 , λ2, λ3 and λ4 

L(q1, q2 , q3, q4, q5 ,λ)= P[F̃(q̃)] − λ1(q2 − q1) − λ2(q3 − q2) − λ3(q4 − q3) − λ4(q5 − q4) 

We can obtain a solution from differentiating L(q1, q2 , q3, q4, q5 ,λ1 , λ2, λ3, λ4) with respect to q  and 

equating  to zero we get, 

∂L

∂q1
=  

1

 12
[
−d5 (Sv5

+ A3)

q1
2 +

r1

2
(

d1Vc1

Pr5

+ Pc1
)] + λ1 

∂L

∂q2
=

3

12
[
−d4 (Sv4 

+ A4)

q2
2 +

r2

2
(

d2Vc2

Pr4

+ Pc2
)] − λ1 + λ2 

∂L

∂q3
=

1

4
[
−d3 (Sv3

+ A3)

q3
2 +

r3

2
(

d3Vc3

Pr3

+ Pc3
)] − λ2 + λ3 

∂L

∂q4
=

1

4
[
−d2 (Sv2

+ A2)

q4
2 +

r4

2
(

d4Vc4

Pr2

+ Pc4
)] − λ3 + λ4 

∂L

∂q5
=

1

4
[
−d1 (Sv1

+ A1)

q5
2 +

r5

2
(

d5Vc5

Pr1

+ Pc5
)] + λ4 

∂L

∂λ
= q2 − q1;

∂L

∂λ2
= q3 − q2;

∂L

∂λ3
= q4 − q3;

∂L

∂λ4
= q5 − q4 

  

q1 = q2 = q3 = q4 = q5 = q∗

=   √

2 (d5 (Sv5 
+ A5) + 3d4 (Sv4

+ A4) + 4d3 (Sv3 
+ A3) + 3d2 (Sv2 

+ A2)+d1 (Sv1 
+ A1))

r1 (
d1Vc1

Pr5

+ Pc1
) + 3r2 (

d2Vc2

Pr4

+ Pc2
) + 4r3 (

d3Vc3

Pr3

+ Pc3
) + 3r4 (

d4Vc4

Pr2

+ Pc4
) + r5 (

d5Vc5

Pr1

+ Pc5
)

 

                             Hence we get q∗an optimal solution to problem. 
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5. NUMERICAL EXAMPLE 

Consider any inventory system with following characteristics. 

 In which yearly demand is close to 1000 units, vendor’s annual rate of production is nearer to 3200 

units /year . The purchaser ordering cost per order is also close to 100$. The vendor’s set up cost per set 

up is nearer to 400$ The unit production cost is nearer to 20. The annual inventory carrying cost per 

dollar invested in stocks is close to 0.2$ . Determine the optimum order quantity. 

 

Crisp Sense Triangular Fuzzy Number 

 

Pentagonal Fuzzy Number 

 

Demand = 1000 units d̃=(d1, d2, d3)= (975,1000,1025) 

 

d̃=(d1, d2, d3, d4, d5) 

=(950,975,1000,1025,1050) 

setup cost =  400 $ 

 

S̃v =(Sv1
, Sv2

, Sv3
) 

= (350,400,450) 

S̃v =(Sv1
, Sv2

, Sv3
, Sv4

, Sv5
) 

=(300,350,400,450,500) 

 

Production cost = 20 $ 

 

Vc̃= (Vc1
, Vc2

, Vc3
) 

= (18,20 ,22) 

Vc̃=(Vc1
, Vc2

, Vc3,Vc4
, Vc5,) 

=(16,18,20,22,24) 

Purchase cost = 25$ P̃c = (Pc1
, Pc2

, Pc3
) 

= (20,25,30) 

P̃c = (Pc1
, Pc2

, Pc3
, Pc4

, Pc5
) 

=(15,20,25,30,35) 

Production rate = 3200 

units 

 

P̃r=(Pr1
, Pr2

, Pr3
) 

= (3100,3200,3300) 

P̃r=(Pr1
, Pr2

, Pr3
, Pr4

, Pr5
) 

=(3000,3100,3200,3300,3400) 

 

Ordering cost =  100 $ 

 

Ã  =(A1, A2, A2) 

= (85,100,115) 

Ã  =(A1, A2, A2, A4, A5) 

=(70,85,100,115,130) 

 

Holding cost = 0.2$ 

 

r ̃ = (r1, r2, r3) 

= ( 0.1,0.2,0.3) 

 

r ̃ = (r1, r2, r3, r4, r5) 

=(0,0.1,0.2,0.3,0.4) 

 

Fuzzy order quantity q̃∗

= (390.975,390.975,390.975) 

q̃∗

= (379.79,379.79,379.79,379.79,379.79) 

Minimum fuzzy joint 

relevant cost 

F̃(q̃) = 

(1579.73,2500.65,3667.22) 

 

F̃(q̃)=(925.51,1597.52,2503.36,3648.31,50

37.83) 

 

 

6. CONCLUSION 

This paper presents integrated inventory model under uncertain environment in two different cases 

using triangular and pentagonal fuzzy numbers. The defuzzification of the triangular and pentagonal 

fuzzy numbers was accomplished with the help of signed distance and graded mean methods 

respectively in order to derive the optimal solution. This serves to be an easy tool for the buyer and 

vendor in elevating the profit and depreciating the total cost. 
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