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    ABSTRACT 

The Optimal Power Flow (OPF) model represents the problem of determining the best operating levels for electric 

power plants in order to meet demands given throughout a transmission network, usually with the objective of 

minimizing operating cost. Traditionally, the optimal power flow (OPF) problem is solved in a centralized manner. 

However, with continuous expansion of the scale of multi-area interconnected power systems, realistic applications of 

the centralized method face additional challenges. To date, a number of decomposition techniques have been 

proposed to tackle decentralized OPF problems such as Lagrangian relaxation, Auxiliary Problem Principle (APP), the 

Alternating Direction Multiplier Method (ADMM), Benders decomposition, dual problem formulation etc., In this 

paper, we propose a fully decentralized OPF algorithm for multi-area interconnected power systems based on the 

distributed interior point method, where solving the regional correction equation was converted into solving a 

parametric quadratic programming (QP) problem during each Newton-Raphson iteration. Our proposed method 

utilizes a unidirectional ring communication graph for information sharing among areas, to eliminate the upward and 

downward communication among cliques. In addition, our method not only solves loosely coupled problems, but can 

also solve other complex distributed computing problems of power systems (e.g. non-convex optimization problem) 

in a fully decentralized manner. The proposed approach is fully decentralized without the need of a central authority 

to compute the cliques or update the multipliers, and no parameter tuning is required. It is robust to network 

partitioning. Namely, its convergence remains stable regardless of how the system is partitioned. Furthermore, it is 

applicable to any networks, including real multi-area power systems. This is a novel approach to tackling decentralized 

OPF problems. Furthermore, this decentralized algorithm enjoys the same convergence performance and accuracy as 

the centralized interior point method. 

 

Keyword: OPF, APP, QP,ADMM, Lagrangian relaxation, a fully decentralized OPF. 

 

INTRODUCTION 

The Optimal Power Flow (OPF) model represents the problem of determining the best operating levels for 

electric power plants in order to meet demands given throughout a transmission network, usually with the 

objective of minimizing operating cost. Because electrical power flows according to nonlinear, non-convex 

functions of the system's physical characteristics, this can be a difficult problem. However, in actual 

operations, an instance with the entire distribution network must be solved in real time (every five 

minutes for many Independent System Operators) to ensure demand is met accurately. 

The exhaustive knowledge of optimal power flow (OPF) methods is critical for proper system 

operation and planning, since OPF methods are utilized for finding the optimal state of any system under 

system constraint conditions, such as loss minimization, reactive power limits, thermal limits of transmission 
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lines, and reactive power optimization. The OPF in power system is an optimization problem under various 

constraints. It is practically significant and well-explored subfield of constrained optimization. The important 

feature of OPF is the presence of the load flow equations in the set of equality constraints. Carpentier 

introduced the OPF problem in 1979. Carpentier introduced OPF as an extension to the problem of optimal 

economic dispatch (ED) of generation in traditional power systems. Carpentier’s key contribution was the 

inclusion of the electric power flow equations in the ED formulation. 

Classical mathematical methods (gradient, Newton’s, linear, and integer programming, etc.) allow 

the finding of optimal solutions of real-world problems. In Jan 2004, Sun et al. proposed a penalty-based 

scheme for OPF with transient stability, in which ad joint equation technique calculates the gradient of the 

penalty term related to the stability constraints. This ad joint equation approach greatly reduces the 

computational cost. 

The optimal power flow (OPF) problem is one of the most widely studied subjects in power 

systems, and is researched mainly based on the centralized method in current practice. However, with 

continuous expansion of the scale of power systems and increasingly complex interconnections among 

areas, realistic applications of the centralized method have revealed a number of limitations: 

• The accurate collection and processing of massive amounts of data is a daunting challenge 

in the centralized control centre and can result in communication bottlenecks; 

• From considerations of confidentiality, it is impractical for each area to upload all of their 

information to the centralized control centre; 

• Each area must operate independently and make its own decisions. Decentralized 

algorithms for solving OPF problems present a desirable alternative control scheme. 

To date, a number of decomposition techniques have been proposed to tackle decentralized OPF 

problems such as Lagrangian relaxation, Auxiliary Problem Principle (APP), the Alternating Direction 

Multiplier Method (ADMM), Benders decomposition, dual problem formulation etc., 

A new interior point nonlinear programming algorithm for optimal power flow problems (OPF) 

based on the perturbed KKT conditions of the primal problem. Through the concept of the centering 

direction, this algorithm is extended to classical power flow (PF) and approximate OPF problems. For the 

latter, CPU time can be reduced substantially. To efficiently handle functional inequality constraints, a 

reduced correction equation is derived, the size of which depends on that of equality constraints. The 

proposed method is very promising for large scale application due to its robustness and fast execution 

time. 

 

INTERIOR POINT METHOD 

Interior-point methods (also referred to as barrier methods or IPMs) are a certain class of algorithms that 

solve linear and non-linear convex optimization problems. An interior point method was discovered by 

Soviet mathematician I. I. Dikin in 1967 and reinvented in the U.S. in the mid-1980s. In 1984, Narendra 

Karmarkar developed a method for linear programming called Karmarkar's algorithm, which runs in 

provably polynomial time and is also very efficient in practice. It enabled solutions of linear programming 

problems that were beyond the capabilities of the simplex method. Contrary to the simplex method, it 

reaches a best solution by traversing the interior of the feasible region. The method can be generalized to 

convex programming based on a self-concordant barrier function used to encode the convex set. 

Any convex optimization problem can be transformed into minimizing (or maximizing) a linear function 

over a convex set by converting to the epigraph form. The idea of encoding the feasible set using a barrier 

and designing barrier methods was studied by Anthony V. Yurii Nesterov, and Arkadi Nemirovski came up 

with a special class of such barriers that can be used to encode any convex set. They guarantee that the 

number of iterations of the algorithm is bounded by a polynomial in the dimension and accuracy of the 

solution. 

Karmarkar's breakthrough revitalized the study of interior-point methods and barrier problems, showing 
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that it was possible to create an algorithm for linear programming characterized by polynomial complexity 

and, moreover, that was competitive with the simplex method. Already Khachiyan's ellipsoid method was 

a polynomial-time algorithm; however, it was too slow to be of practical interest. 

 

OBJECTIVE 

Our objective is to minimize the total generation costs: 

 

 

Where, ФG is the set of buses with generators; and function Ci (PiG) is the generation cost function 

of the generator at bus i, which can be expressed as a quadratic function: 

 
Where c2,i, c1,i and c0,i are the generation cost coefficients for the generator at bus i respectively 

 POWER BALANCE EQUATIONS 

 

where Ф denotes the set of buses; Фi denotes the set of buses connected to bus i; Pi
G +jQi

G and Pi
D +jQ D 

are the complex powers of the generator and load at bus i, respectively; Vi and δi are the voltage magnitude 

and angle at bus i, and δi = 0 if bus i is the slack bus; and Gij+jBij is the ij-th element of the admittance matrix 

of the power network. 

 NETWORK SECURITY CONSTRAINTS 

 

 

where Г denotes the set of lines; and Pijmax denotes the maximum capacity of line ij. 

 LIMITS OF VARIABLES 

 

where PG, QG and V represent the vector of active and reactive power outputs of generators, and bus 

voltage magnitude, respectively; the subscripts max and min represent the upper and lower limits of 

variables respectively. 

 

PARTITIONING OF SYSTEM INTO AREAS 
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(a) Before decomposition                                               (b) After decomposition 

 

A 3-area interconnected power system shown in Fig.1.1 is used as an example to illustrate the 

decomposition principle. Buses i, j and k are called boundary buses and the lines among them are called 

boundary lines. When dividing the overall system according to the geographical partitioning, the boundary 

lines are duplicated and the voltage magnitude and angle at boundary buses are added to the corresponding 

areas, respectively, as shown in Fig.1.1 (b). By copying boundary lines, we only need to equivalence of the 

networks before and after decomposition: 

 

                                             

In this paper, we took the boundary variables in different areas as the same variables, e.g., Vi1 and Vi2 were 

taken as the same variable Vi, thus eliminating consistency constraints (2.6) in our decentralized model. Define 

xa(I) as the internal variables of area a that are contained in area a only, and xa(B) as the boundary variables 

of area a representing the shared variables between area a and other areas. 

Then, the variables in area 1 are divided into 2 categories: internal variables x1(I): = (P1G ; Q1G ; V1I; 

δ1I) and boundary variables x1(B): = (V B ; δ1B ), where V1B = (Vi, Vj)T and δ1B = (δi, δj)T. 

Similarly, the variables in area 2 are also divided into 2 categories: internal variables x2(I): = (P2G ; 

Q2G ; V2I; δ2I) and boundary variables x2(B): = (V2B ; δ B ), where V2B = (Vi, Vj, Vk)T and δ2B = (δi, δj, δk)T. 

Finally, the variables in area 3 are also divided into 2 categories: internal variables x3
(I): = (P3

G ; Q3
G 

; V3I ; δ3I ) and boundary variables x3(B): = (V3B ; δ B ), where V3B = (Vk, Vj)T and δ3B = (δk, δj)T. 

Hence, we can formulate the self-governing objective functions and constraints related to each 

independent system. Accordingly, the D-OPF model of the 3-area system can be written in the following 

compact form: 
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The OPF model of area a, a{1, 2, 3}: 

 

 

 

 

 

 

 

 

 

 

 

 

 

where fa(xa) represents the objective function of area a. 

hi (xa(I), xa(B))  represents the active and reactive power balance equations at bus i of area a; 

Гa(I) and Гa(B) denote the set of internal and boundary lines of area a, respectively;. 

The subscripts max and min represent the upper and lower limits of variables, respectively. 

we observe that there are no coupling objectives or coupling constraints occurring in regional sub-

problems; the only contact of area a’s sub-problem with other areas’ sub-problems is the shared boundary 

variables between area a and other areas. 

 

DISTRIBUTED INTERIOR POINT METHOD 

 

The C-OPF problem can be rewritten in the following compact form: 

 

We adopt the interior point method to solve this OPF problem. After introducing slack variables u and l 

(u, l > 0), Lagrange multipliers λ, w and z (w < 0, z> 0), we can construct the following Lagrange function: 

 
 

where λ is the barrier parameter, and r denotes the number of inequality constraints. 

By applying the Newton-Raphson method into the KKT optimality condition Newton directions Δx and 

Δλ as well as Δu, Δl, Δw and Δz can be calculated by solving the following correction equations: where 

H and J denote the Hessian matrix and Jacobian matrix respectively; Lx, Lλ, Lu’, Ll’ , Lw and Lz denote 

the residuals of the perturbed KKT condition. 
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where (L, U, Z, W) ϵ R(r*r) are all diagonal matrices, y ϵ R(m) and (Z, W) ϵ R(r) are Lagrangian multipliers and 

e = [1 ,...,1]' ϵ R(r) 

If li (k) happens to become zero at the k-th iteration, it is obvious from the above equation that 

Δli (k) is equal to zero and hence li (k+1) = li (k) + Δli (k) = 0. That is, once I, falls on the boundary of a 

feasible region, it is stuck at that point on the boundary. The same situation may occur for variable zi. 

Such an undesirable attribute clearly precludes the convergence of the algorithm. In order to overcome 

this difficulty, we introduce a perturbed factor µ > 0 torelax (3.14) and (3.15) as: 

 

 

 

 

  

 

 

 
 

 

 

 
 

(3.17) 

 
(3.18) 
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SIMULATION OUTPUTS 

A simple 3-bus system shown in fig 5.1 was used to intuitively illustrate the proposed algorithm. The 3 

bus test system, which was divided into 3 areas, is depicted in Fig.5.2. Bus 3 was treated as the slack 

bus. The generating unit data are given in Table 5.1. The limits of bus voltage magnitudes were between 

0.95 p.u. and 1.052 p.u.. 

 

 

 

Fig.1.2 Three-bus interconnected test system before decomposition. 

 

 

 

Fig.1.3 Three-bus interconnected test system after decomposition.  

 

TABLE 1.1  LOAD DATA FOR 3-BUS SYSTEM 

 

 
LOAD DATA 

Bus Type of bus 
Voltage Load 

|V| (p.u) δ (θ) P (MW) Q (MW) 

1 PQ 1.0000 0 200 100 

2 PQ 1.0000 0 160 80 

3 Slack 1.0000 0 360 180 



Nat. Volatiles & Essent. Oils, 2021; 8(2): 67-78  

74 

 

TABLE 1.2  LINE DATA FOR 3-BUS SYSTEM 

 

LINE DATA 

Bus no. Bus no. R (p.u.) X (p.u.) 

1 2 0.04 0.5 

1 3 0.01 0.35 

2 3 0.08 0.55 

 

 
TABLE 1.3 GENERATING UNIT DATA FOR 3-BUS SYSTEM 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
SIMULATION ON IEEE 9-BUS SYSTEM 

 
 

GENERATING UNIT DATA 

 

Parameters Generators 

1 2 3 

P G 

i,max (MW) 

400 100 300 

P G 

i,min (MW) 

100 50 100 

Q G 

i,max (M Var) 

180 80 230 

Q G 

i,min (M Var) 

-90 -40 -115 

C2,i ($/MW2) 0.04 0.05 0.06 

C1,i ($/MW) 30 15 30 

C0,i ($) 200 80 100 
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TABLE 1.4 NUMBER OF P,V,Q,δ CALCULATIONS 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
TABLE 1.5  LOAD DATA OF IEEE 9-BUS SYSTEM 

 
 

Area 1 1,4,5,7 

Area 2 2,3,6,9,8 

Generator bus 1,5,8 

No, of PV bus 3 

No. of PQ bus 6 

No. of P, δ calculations 8 

No. of Q,V calculations 6 

Dimensions of Jacobian 8+6=14*14 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig.1.3 One line diagram of IEEE 9-bus 

system 
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LOAD DATA 

Bus Type of 

bus 

Voltage Load Generation 

|V| (p.u) δ (θ) P (MW) Q (MW) P (MW) Q (MW) 

1 Slack 1.0300 0 0 0   

2 PQ 1.0000 0 10 5   

3 PQ 1.0000 0 25 15   

4 PQ 1.0000 0 60 40   

5 PQ 1.0600 0 10 5 80  

6 PV 1.0000 0 100 80   

7 PQ 1.0000 0 80 60   

8 PV 1.0100 0 40 20 120  

9 PQ 1.0000 0 20 10   

 

 
TABLE 1.6  LINE DATA OF IEEE 9-BUS SYSTEM 

LINE DATA 

Bus no. Bus no. R (p.u.) X (p.u.) ½ B (p.u.) 
Transformer 

tap 

1 2 0.0180 0.0540 0.0045 1 

1 4 0.0150 0.0450 0.0038 1 

2 3 0.0180 0.0560 0 1 

3 9 0.0200 0.0600 0 1 

4 5 0.0130 0.0360 0.0030 1 

4 6 0.0200 0.0660 0 1 

5 6 0.0600 0.030 0.0028 1 

5 7 0.0140 0.0360 0.0030 1 

6 9 0.0100 0.0500 0 1 

7 8 0.0320 0.0760 0 1 

8 9 0.0220 0.0650 0 1 
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TABLE 1.7  GENERATOR LIMITS & COST CO-EFFICIENTS OF IEEE 9-BUS SYSTEM 

 

Unit 

number 

Pgi (min) 

(MW) 

Pgi (max) 

(MW) 

Qgi (min) 

(MW) 

Qgi (max) 

(MW) 

a 

($/h) 

b 

($/Mwh) 

c 

($/Mwh2) 

1 10 300 -20 200 150 2 0.1100 

5 30 300 -20 300 600 1.2 0.0850 

8 25 250 -20 300 355 1 0.1225 

 

 
TABLE 1.8  SIMULATION RESULTS OF 3-BUS SYSTEM 

 
  
 
 
 
 
 
 
 
 
 

 
 
TABLE 1.9  SIMULATION RESULTS OF IEEE 9-BUS SYSTEM 

 
  
 
 
 
 
 
 
 
 
 

 
 
TABLE 1.10   GENERATION, DEMAND, LOSSES AND COST 

 
 

Bus number 
Active power 

P (MW) 

Reactive power 

Q (MW) 

1 P1
G (MW) 342.1609 Q1

G (MW) 71.9953 

5 P2G (MW) 98.0964 Q2G (MW) 42.4530 

8 P3
G (MW) 286.1425 Q3

G (MW) 168.7293 

Bus number 
Active power 

P (MW) 

Reactive power 

Q (MW) 

1 P1G (MW) 150.8330 Q1G (MW) -19.5170 

5 P5G (MW) 79.5460 Q5G (MW) 241.1660 

8 P8G (MW) 119.4190 Q8G (MW) 26.6130 

Parameter 3-bus system IEEE 9-bus system 

Total demand PD (MW) 720 345 

Total generation PG 

(MW) 
726.3998 349.7980 

Total loss PL (MW) 6.3998 4.7980 

Total cost ($) 31,4576.3980 6408.9487 



Nat. Volatiles & Essent. Oils, 2021; 8(2): 67-78  

78 

 

  REFERENCES 

 

[1] A. J. Conejo, J. A. Aguado, “Multi-area coordinated decentralized DC optimal power flow,” IEEE 

Trans. Power Syst., vol. 13, no. 4, pp. 1272-1278, Nov. 1998. 

[2] J. A. Aguado, V. H. Quintana, A. J. Conejo, “Optimal power flows of interconnected power 

systems,” IEEE PES Summer Meeting, vol. 2, pp. 814 - 819, July 1999. 

[3] B. H. Kim, R. Baldick, “Coarse-grained distributed optimal power flow,” IEEE Trans. Power Syst., 

vol. 12, no. 2, pp. 932-939, May 1997. 

[4] B. H. Kim, R. Baldick, “A comparison of distributed optimal power flow algorithms,” IEEE Trans. 

Power Syst., vol. 15, no. 2, pp. 599-604, May. 2000. 

[5] R. Baldick, B. H. Kim, C. Chase, et al., “A fast distributed implementation of optimal power flow,” 

IEEE Trans. Power Syst., vol. 14, no. 3, pp. 858-864, Aug. 1999. 

[6] K. H. Chung, B. H. Kim, D. Hur, “Multi-area generation scheduling algorithm with regionally 

distributed optimal power flow using alternating direction method,” Int. J. Elect. Power Energy Syst., vol. 33, 

no. 9, pp. 1527–1535, Nov. 2011. 

[7] S. Magnusson, P. C. We eraddana, C. Fischione, “A distributed approach for the optimal power-

flow problem based on ADMM and sequential convex approximations,” IEEE Trans. on Control of Network 

Systems, vol. 2, no. 3, pp. 238– 253, Sept. 2015. 

[8] T. Erseghe, “Distributed optimal power flow using ADMM,” IEEE Trans. Power Syst., vol. 29, no. 5, 

pp. 2370-2380, Sept. 2014. 

[9] W. Zheng, W. Wu, B. Zhang, et al., “A fully distributed reactive power optimization and control 

method for active distribution networks,” IEEE Trans. Smart Grid, vol. 7, no. 2, pp. 1021-1033, March 2015. 

[10] Y. Wang, L. Wu, S. Wang, “A fully-decentralized consensus-based ADMM approach for DC-OPF 

with demand response,” IEEE Trans. Smart Grid, 2016. (online print)  

[11] A. X. Sun, D. T. Phan, S. Ghosh, “Fully decentralized AC optimal power flow algorithms,” in Proc. 

IEEE Power Energy Soc. Gen. Meeting (PES), Vancouver, BC, Canada, 2013, pp. 1-5. 

[12] L. Min, A. Abur, “A decomposition method for multi-area OPF problem,” in Proc. Power Systems 

Conf. Expo. (PSCE), 2006, pp. 1689-1693. 

[13] Z. Miao, L. Fan, “A novel multi-agent decision making architecture based on dual's dual problem 

formulation,” IEEE Trans. Smart Grid, 2016. (online print). 

[14] A. Y. S. Lam, B. Zhang, and D. Tse, “Distributed algorithms for optimal power flow problem,” 

Mathematics, vol. 22, no. 1, pp. 430-437, 2011. 

[15] E. Dall'Anese, H. Zhu, G. B. Giannakis, “Distributed optimal power flow for smart microgrids,” 

IEEE Trans. Smart Grid, vol.4, no. 3, pp. 1464-1475, Sept. 2013. 

[16] A. J. Conejo, F. J. Nogales, F. J. Prieto, “A decomposition procedure based on approximate 

Newton directions,” Mathematical programming, vol. 93, no. 3, pp. 495- 515, Dec. 2002. 

[17] F. J. Nogales, F. J. Prieto, A. J. Conejo, “A decomposition methodology applied to the multi-area 

optimal power flow problem,” Annals of Operations Research, vol. 120, no. 4, pp. 99-116, Apr. 2003. 

[18] P. N. Bakirtzis, A. G. Biskas, N. I. Macheras, et al., “A decentralized implementation of DC optimal 

power flow on a network of computers,” IEEE Trans. Power Syst., vol. 20, no. 1, pp. 25-33, Feb. 2005. 

 

 


