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Abstract: The aim of this  paper is to introduce a  new class of closed sets namely 𝑔𝑠𝑝𝛼𝜔-closed sets  which is 

obtained by generalizing 𝑔𝑠𝑝 -closed sets via 𝛼𝜔- open sets and investigate  some of their basic properties in 

topological spaces. 

 

Introduction: 

LEVINE [5 ] introduced semi-open sets in 1963. In 1986, D.ANDRIJIEVIC [ 1] introduced the notion of 

semi-pre- open sets in topological spaces. In 2000, the   closed sets [9] were introduced and studied 

by P.SUNDARAM and M.SHRIK JOHN.  M.PARIMALA [8] introduced the concept of  -closed sets, 

and studied their properties in 2017.The aim of this  paper is to introduce a  new class of closed sets 

namely gspα -  closed sets  and investigate some of their basic properties in topological spaces. 

 

1. PRELIMINARIES: 

 

DEFINITION 1.1:A subset 𝐀 of a space(𝐗, 𝛕)is called a  

1. semi open set if 𝐀 ⊆ 𝐜𝐥(𝐢𝐧𝐭(𝐀)) 

2. 𝛂-open set if 𝐀 ⊆ 𝐢𝐧𝐭 (𝐜𝐥(𝐢𝐧𝐭(𝐀))) 

3. semi pre(=𝛃  )-open set if 𝐀 ⊆ 𝐜𝐥 (𝐢𝐧𝐭(𝐜𝐥(𝐀))) 

4. b-open set if 𝐀 ⊆ (𝐜𝐥(𝐢𝐧𝐭(𝐀))) ∪  (𝐢𝐧𝐭(𝐜𝐥(𝐀))) 

5. regular-open set if 𝐀 =  𝐢𝐧𝐭(𝐜𝐥(𝐀)) 

 

DEFINITION 1.2: A subset 𝐀 of a space (𝐗, 𝛕) is called  

1. generalized closed (briefly g-closed) if 𝐜𝐥(𝐀) ⊆ 𝐔 whenever 𝐀 ⊆ 𝐔 and 𝐔 is open 

2. regular-generalized closed(briefly rg-closed)if 𝐜𝐥(𝐀) ⊆ 𝐔 whenever 𝐀 ⊆ 𝐔 and 𝐔  is 

regularopen. 

3. generalized b-closed (briefly gb-closed) if 𝐛𝐜𝐥(𝐀) ⊆ 𝐔 whenever 𝐀 ⊆ 𝐔 and 𝐔 is open 

4. regular-generalized b- closed(briefly rgb-closed)if𝐛𝐜𝐥(𝐀) ⊆ 𝐔whenever𝐀 ⊆ 𝐔and𝐔is regular- 

open 

5. generalized semi-preregular-closed (briefly gspr-closed) if 𝐬𝐩𝐜𝐥(𝐀) ⊆ 𝐔whenever 𝐀 ⊆ 𝐔 and 

𝐔 is regular open 

6. generalized𝛃-closed (briefly g 𝛃-closed) if 𝛃𝐜𝐥(𝐀) ⊆ 𝐔 whenever 𝐀 ⊆ 𝐔 and 𝐔 is open. 
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7. 𝛙�̂�-closedif𝛙𝐜𝐥(𝐀) ⊆ 𝐔whenever𝐀 ⊆ 𝐔andUis�̂�-open 

8. 𝛙𝐠-closed if𝛙𝐜𝐥(𝐀)  ⊆ 𝐔 whenever 𝐀 ⊆ 𝐔 and 𝐔 is open 

9. generalized semi-closed (briefly gs-closed) if 𝐬𝐜𝐥(𝐀)  ⊆  𝐔 whenever 𝐀 ⊆  𝐔 and U is open  

10. ̂ *-closed if 𝐬𝐩𝐜𝐥(𝐀) ⊆ 𝐔 whenever 𝐀 ⊆ 𝐔 and 𝐔 is 𝛚-open 

11. 𝛙-closed if 𝐬𝐜𝐥(𝐀)  ⊆ 𝐔 whenever 𝐀 ⊆  𝐔 and 𝐔 is sg-open 

12. 𝛚(or�̂̂�) closed if 𝐜𝐥(𝐀)  ⊆ 𝐔 whenever 𝐀 ⊆ 𝐔 and 𝐔 is semi-open 

13. 𝛂𝛚-closed if𝛚𝐜𝐥(𝐀)  ⊆ 𝐔 whenever 𝐀 ⊆ 𝐔 and 𝐔 is 𝛂-open 

14. 𝐠𝛂𝛚 -closed if 𝐜𝐥(𝐀)  ⊆  𝐔 whenever 𝐀 ⊆  𝐔 and 𝐔 is 𝛂𝛚-open 

 

2. 𝐠𝐬𝐩𝛂𝛚 -CLOSED SET  

 

DEFINITION 2.1: 

A subset A of (X, τ) is called a 𝐠𝐬𝐩𝛂𝛚-closed set  if spcl(A)  ⊆  U whenever A ⊆  U and U is αω-

open in (X,, τ ). The complement of 𝐠𝐬𝐩𝛂𝛚 -closed set is 𝐠𝐬𝐩𝛂𝛚 –open set. 

 

EXAMPLE2.2: 

Let X = {a, b, c}; τ= {X,φ, {c}, {a, c}}. Closed sets are {X,φ, {b}, {a, b}} 

semi-pre closed sets are (X,φ , {a}, {b}, {a, b}}. αω-open sets are {X,φ , {c}, {a, c}} 

gspαω -closed sets are {X,φ , {a}, {b}, {a, b}, {b, c}} 

 

THEOREM 2.3: 

Every closed set is gspαω -closed set 

 

PROOF: 

Let A be a closed set, cl(A)  =  A. Let A ⊆  U, U be αω-open 

We’ve spcl(A)  ⊆ cl(A)  ⊆ U ⇒ spcl(A)  ⊆ U. Hence A is gspαω -closed set. 

The converse of the above theorem need not be true as seen from the following example. 

 

EXAMPLE 2.4:  Let X = {a, b, c},𝛕= {X,𝛗 , {c}, {a, c}} 

Closed sets are {X, φ, {b}, {a, b}. gspαω-closed sets are {X,φ, {a}, {b}, {a, b}, {b, c}}  

Let A ={a}. Here, {a} is gspαω-closed set but not closed set in (X, τ) 

 

THEOREM 2.5: 

Every regular-closed set is gspαω-closed set 

 

PROOF: 

Let A be a regular-closed set. Let A ⊆  U, U be αω-open 

But, every regular closed set is closed set∴ cl(A)  =  A. 

We’ve spcl(A)  ⊆ cl(A)  =  A ⊆ U ⇒ spcl(A)  ⊆ U. Hence A is gspαω-closed set 

The converse of the above theorem need not be true as seen from the following example. 

 

EXAMPLE 2.6: 

Let X = {a, b, c}, τ= {X,φ , {b}, {c}, {b, c}}, Closed sets are {X,φ , {a}, {a, b}, {a, c}} 

regular-closed sets are {X,φ , {a, b}, {a, c}}, gspαω-closed sets are {X,φ  , {a}, {b}, {c}, {a, b}, {a, c}}.  Let 
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A ={b}. Here, {b} is gspαω-closed set but not regular-closed set in (X, τ). 

 

THEOREM 2.7: 

Every pre-closed set is gspαω-closed set 

 

PROOF: 

Let A be a pre-closed set. Let A ⊆  U, U be αω-open 

Since A is pre-closed, pcl(A)  =  A. We’vespcl(A) ⊆ pcl(A) = A ⊆ U ⇒ spcl(A)  ⊆ U 

Hence A is gspαω-closed set 

The converse of the above theorem need not be true as seen from the following example. 

 

EXAMPLE 2.8: 

Let X = {a, b, c},  τ= {X, φ, {a}, {a, c}}. Closed sets are {X,φ , {b}, {b, c}} 

pre-closed sets are {X,φ , {b}, {c}, {b, c}} 

gspαω -closed sets are {X,φ  , {b}, {c}, {a, b}, {b, c}} Let A = {a,b} 

Here, {a, b}isgspαω-closed set but not pre-closed set in (X, τ) 

 

THEOREM 2.9: 

Every α-closed set is gspαω-closed set 

 

PROOF: 

Let A be a   α-closed set. Let A ⊆  U, U be αω-open 

Since A is α-closed, cl (int(cl(A)))  =  A 

We’ve A ⊆ cl(A) ⇒ cl(int(cl(A)))  ⊆ cl(A) . Also, cl(A)  =  A 

⇒ cl(int(A))  ⊆ A ⇒ int (cl(int(A))) ⊆ int(A) ⊆ A, [since int(A)  ⊆ A] 

⇒ int (cl(int(A))) ⊆ A ⊆ U ⇒ spcl(A)  ⊆ U . Hence A is gspαω -closed set 

The converse of the above theorem need not be true as seen from the following example. 

 

EXAMPLE 2.10: 

Let X = {a, b, c}, τ= {X,φ , {c}, {a, c}}, Closed sets are {X,φ , {b}, {a, b}} 

α-closed sets are {X,φ , {a}, {b}, {a, b}} 

gspαω -closed sets are {X,φ  , {a}, {b}, {a, b}, {b, c}}.  Let A = {b,c} 

Here, {b, c} is gspαω-closed set but not α-closed set in (X, τ). 

 

THEOREM 2.11: 

Every semi-pre-closed set is gspαω -closed set 

 

PROOF: 

Let A be a semi-pre-closed set. Let A ⊆  U, U be αω-open 

Since A is semi-pre-closed, spcl(A)  =  A ⇒ spcl(A)  =  A ⊆ U ∴ spcl(A)  ⊆ U 

Hence A is gspαω-closed set 

The converse of the above theorem need not be true as seen from the following example. 

 

EXAMPLE 2.12: 
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Let X = {a, b, c}, τ= {X,φ , {c}, {a, c}}, Closed sets are {X,φ, {b}, {a, b}} 

semi-pre-closed sets are {X,φ , {a}, {b}, {a, b}} 

gspαω-closed sets are {X,φ, {a}, {b}, {a, b}, {b, c}} Let A = {b,c} 

Here, {b, c} is gspαω -closed set but not semi-pre-closed set in (X, τ) 

 

THEOREM 2.13: 

Every gαω-closed set is gspαω-closed set 

 

PROOF: 

Let A be a gαω -closed set LetA ⊆  U, U be αω-open 

Since A is gαω-closed, cl(A)  ⊆  U, U isαω-open 

We’ve spcl(A)  ⊆ cl(A)  ⊆ U ⇒ spcl(A)  ⊆ U. 

Hence A is gspαω-closed set 

The converse of the above theorem need not be true as seen from the following example. 

 

EXAMPLE 2.14: 

Let X = {a, b, c},  τ= {X,φ , {b}, {a, b}}, Closed sets are {X,φ , {c}, {a, c}} 

αω-open sets are {X,φ , {b}, {a, b}}, gαω -closed sets are {X,φ , {c}, {b, c}, {a, c}} 

gspαω-closed sets are {X,φ  , {a}, {c}, {b, c}, {a, c}}. Let A ={a} 

Here, {a} is gspαω -closed set but not gαω-closed set in (X, τ) 

 

THEOREM 2.15: 

Every gpαω -closed set is gspαω-closed set 

 

PROOF: 

Let A be a gspαω-closed set. Let A ⊆  U, U be αω-open 

Since A is gpαω -closed, pcl(A)  ⊆  U, U is αω-open 

We’ve spcl(A)  ⊆ pcl(A)  ⊆ U ⇒ spcl(A)  ⊆ U. 

Hence A is gspαω -closed set 

The converse of the above theorem need not be true as seen from the following example. 

 

EXAMPLE-2.16: 

Let X = {a, b, c}, τ= {X, , {b}, {c}, {b, c}}, Closed sets are {X,φ , {a}, {a, b}, {a, c}} 

pre-closed sets are {X, , {a}, {a, b}, {a, c}}, αω-open sets are {X,φ , {b}, {c}, {b, c}} 

gpαω-closed sets are {X,φ , {a}, {a, b}, {a, c}} 

gspαω -closed sets are {X,  , {a}, {b}, {c}, {a, b}, {a, c}}. Let A ={b} 

Here, {b} is gspαω-closed set but not gpαω-closed set in (X, τ) 

 

THEOREM-2.17: 

If A is αω-open and gspαω-closed, then A is semi-pre-closed. 

 

PROOF: 

Let A ⊆  U, U beαω–open. Since A is αω -open, take A = U ___(1) 

Also, A is gspαω-closedand open, then A ⊆ Aand spcl(A)  ⊆ U =  A (by (1)) 

⇒ A ⊆ A and spcl(A) ⊆ A.  spcl(A)  =  A. Hence A is semi-pre-closed 
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THEOREM 2.18: 

Union of two gspαω-closed sets is gspαω -closed set 

 

PROOF: 

Let A and B be two gspαω -closed sets in (X, τ) 

Let G be any αω-open set in (X, τ) such that A  ∪ B ⊆ G, thenA ⊆ GandB ⊆ G 

Since A and B are gspαω-closed sets, then spcl(A)  ⊆  G and spcl(B)  ⊆ G 

But, spcl(A ∪ B)  =  spcl(A) ∪ spcl(B)  ⊆  G 

⇒ spcl(A ∪  B) ⊆ G, Gis αω-open Hence A ∪  B is gspαω-closedset 

 

REMARK 2.19: 

Intersection of two gspαω-closed sets need not be gspαω-closed sets  

For example, X = {a, b, c}, τ= {X,φ , {c}}, Closed sets are {X,φ , {a, b}} 

gspαω-closed sets are {X, φ, {b}, {c}, {a, b}, {b, c}, {a, c}}  

Here, {a, b} and {a, c} are gspαω-closed sets 

But {a, b} ∩{a, c} = {a} is not a gspαω -closed set 

 

THEOREM 2.20: 

If A is gspαω-closed set in X and A ⊆ B ⊆ spcl(A), then B is also gspαω-closed set in X. 

 

PROOF: 

Let A be gspαω-closed set in X and A ⊆ B ⊆ spcl(A). Let B ⊆  U and U be αω-open set in X. Since 

A ⊆ B, then A ⊆ U and A is gspαω-closed set, spcl(A)  ⊆ U 

Given B ⊆ spcl(A) ⇒ spcl(B)  ⊆ spcl(spcl(A)) ⇒ spcl(B)  ⊆ spcl(A)  ⊆ U 

 ∴ spcl(B)  ⊆ U. Hence B is gspαω -closed set in X. 

 

THEOREM 2.21: 

Let A ⊆ Y ⊆ X and suppose that A is gspαω-closedsetin X. Then A is gspαω-closed set relative toY. 

 

PROOF: 

Let A ⊆  Y ∩ G, G be αω–open. Since A is gspαω-closed set, then spcl(A)  ⊆ G, whenever A ⊆  G, G 

is αω-open⇒  Y ∩ spcl(A)  ⊆  Y ∩  G. 

Hence A is gspαω-closed set relative to Y. 

 

REMARK 2.22: 

The set gp*-closed set and gspαω -closed set are independent and this can be seen from the following 

example. 

 

2.23 EXAMPLE: 

Let X = {a, b,c},  τ= {X, , {b}, {a, b}} 

Closed sets are {X, φ ,{c}, {a, c}} 

gp-open sets are {X,φ , {a}, {b}, {b, c}, {a, c}} 

semi-pre closed sets are {X,φ , {a}, {c}, {b, c}, {a, c}} 

αω-open sets are {X,φ , {b}, {a, b}} 

Let A = {a, b} ⊆ X, cl(A)  =  X ⊆ X. 
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Let  = {a} ⊆ {a, b}, spcl(A)  =  {a}  ⊆ {a, b} . 

gp*-closed sets are {X,φ , {c}, {a, b}, {a, c}} 

gspαω-closed sets are {X, , {a}, {c}, {b, c}, {a, c}} .  

Here, the sets {a} and {b, c} are gspαω-closed set but not gp*closed set. 

 Also, the set {a, b} is gp*-closed set but not gspαω-closed set. 

 

CONCLUSION  

In this paper we have introduced gspαω-closed set and studied some of their properties in topological 

spaces. Also we can extend the study to  gspαω-continuous maps, gspαω-irresolute maps .This study 

can be extended to the concept of compactness, connectedness and separation axioms. Also it can be 

extended to spaces like Bitopology, Fuzzy and Ideal topological spaces. 
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