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Abstract 

Climate changes affect all sectors of life, especially the agricultural sector, where rising temperatures 

and drought have caused a decrease in many types of agricultural crops, which poses a threat to global 

food security. Here we examine potential changes in climate variables (precipitation and temperature) 

over the freed areas of northern Syria, with the aim of developing a new prediction system for multi-

year agrometeorological risks (i.e. drought and extreme heat) over the freed areas of northern Syria. 

We first conducted interviews, highlighting that regional practitioners do adapt their practices 

depending on weather/climatic forecast, switching to crops that are more resilient to drought, or 

adapting their agricultural calendar, but that stressing the need for more reliable forecast of 

agrometeorological risks. Using ERA5 data between 1979 and 2021, we indeed found an increase in 

drought risks, which is strongly related to an increase in maximum temperature, enhancing 

evapotranspiration.  We thus test the benefit of neural network in providing reliable prediction for 

maximum temperature and drought indices.Preliminary results are promising with minimal errors in 

the mean, and in the variance of predicted data, as compared to the original data. Therefore, we 

implemented different sensors over the freed areas of northern Syria to monitor climate variations, 

and to set a live monitoring system, from which new and accurate prediction for climate stress will be 

provided on seasonal basis.  

Key words: Climate, Corps, Agriculture, precipitation, temperature, Neural network. 

1-Introduction 

Weather and climate greatly affect most sectors of life, especially the agricultural sector. 

Smallholder farming is the most common type of agriculture on the earth, supporting many 

of the world's most vulnerable people (Samberg et al., 2016). According to Ricciardi et al. 

(2018), smallholder farmers produce 70-80 % of the world’s food. The success of smallholder 

farmers is thus very important for global food security, and consequently for national food 

security in developing countries (Shiferaw et al., 2011). Unfortunately, recent and sudden 
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changes in weather and climate, such as increasing frequency and intensity of heat waves, 

floods and droughts, substantially affect the production of smallholder farmers (Hufkens et 

al., 2019). About 76 % of farmers are expected to suffer economic losses as a result of climate 

change (Claessens et al., 2012). 

The World Meteorological Organization (WMO) established production and verification 

guidelines for seasonal climate forecasts in 2006, which are now being followed by 12 national 

and multinational forecast centers across five continents, known as Global Producing Centers 

(GPC; “Global Producing Centers of Long-Range Forecasts,” 2016). Thus, the role of 

meteorological centers is to develop guidelines and warnings, when necessary, for farmers to 

take measures to determine the types of agricultural crops they wish to grow according to the 

expected weather  (Pulwarty and Sivakumar, 2014). Establishing a relationship between crop 

selection and meteorology through weather forecasts has many challenges (Cantelaube and 

Terres, 2005) and climate conditions must be an integral part of decision-making (Kamatchi 

and Parvathi, 2019). 

A large amount of evidence shows the potential utility of increasingly complex and accurate 

weather and climate forecasts for agricultural production (Westra and Sharma, 2010). In the 

future decades, crop resilience to climate change will be important for global food security, 

as decrease in crop productivity is currently observed, as a result of a changing climate (Ahmed 

et al., 2015). This will be particularly important over the Mediterranean Region, where climate 

is on average hot and dry, and characterize by very specific morphologic, geographical, 

historical, and societal properties (Lionello et al., 2006). By 2050s, eastern Mediterranean 

countries are expected to experience a warming up to 2-2.75 o C, and a decrease of about 20-

25% in winter rainfall (Ragab and Prudhomme, 2002). Many studies have been undertaken to 

examine the regional climate of several Southwest Asian nations, such as Bahrain (Elagib and 

Addin Abdu, 1997), as well as the Arab world (Abahussain et al. 2002). The outcomes of these 

studies show the impact of climate variability is stronger in the recent decades, as a result of 

human activities (Elagib and Addin Abdu, 1997; Abahussian et al. 2002; Modarres and de Paulo 

Rodrigues da Silva, 2007). In particular, Ibrahim et al, (2018) showed a decrease in rainfall in 

most climatic stations, especially in the north and western parts of Syria. However, during the 

last decade, due to the civil war in Syria, no applied research was conducted in the freed areas, 

and farmers related to weather forecast only. In addition, there is an urgent need to know the 

amount of rainfall over the area, as an important factor in assessing the amount of water 

available to meet the various demands of agriculture, industry and other human activities 

(Ibrahim et al, 2018). This will have a crucial importance in improving human livelihood over 

the region.  

Seasonal forecast are most commonly done using regression techniques (Agbo, 2021). More 

recently, the scientific community highlighted the added-value of machine learning 

techniques in providing more reliable seasonal forecast, as such non-linear prediction system 

allows the systems to learn and grow from their experiences (Rushing et al., 2005; Hasan et 

al., 2016; Pandy and Singh, 2019). In addition, machine learning does not require a detailed 

understanding of weather characteristics and parameters, but requires long climatic records 

to robustly calibrate the model and predicted its future evolution at seasonal to inter annual 
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scales (Salman et al., 2015). Specifically, in this study, after highlighting recent trends in 

drought and extreme temperature and identifying end-users’ need, we aim at developing a 

prediction system for multi-year agrometeorological risks (i.e. drought and extreme heat) over 

the freed areas of northern Syria. 

This paper is organized as follow. In section 2, we describe the context of the study region, the 

data and methodology. In section 3.1-2, we present the results of our interviews, before to 

examine recent trends in agrometeorological risks. In section 3.3, we demonstrate the 

robustness of neural network in predicting agrometeorological risks over multiple years, 

before introducing how this approach will be combined to a live monitoring system in the 

coming month (section 3.4). Finally, in section 4, we summarize our results and discuss their 

wider implications.  

2. Context, Data and Methodology  

2.1. Study Region  

 
Figure (1) Summary of climate conditions over Syria:      

                                                    

a) annual precipitation (mm.yr-1); b) annual temperature (oC); c) seasonal cycle for 

precipitation (blue histograms) and temperature (orange lines). 

Syria is located on the eastern of the Mediterranean region, and is divided geographically into 

mountainous regions, coastal areas, the Badia and the interior areas, which include many 

plains, such as Damascus, Aleppo, Homs, Daraa and Hama (Fig. 1a-b). It has a Mediterranean 

influenced climate characterized by long, hot and mostly dry summers (Fig. 1c; Ghaleb et al, 

2010). In addition, as illustrated in Figure 1, the coastal region is wetter than others are, 

whereas Badia is dryer and warmer. The study area is located in the plains of Aleppo, where 

temperatures above 30 oC in summer and approach zero in winter, and the rainy season 
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extends from October to May, with amount of seasonal rains ranges between 300-500 mm.yr-

1 

2.2. Identifying end-users need: 

To identify end-users need, we create a questionnaire targeting the people in the freed areas 

of the north of Syria. The questionnaire was then presented to farmers, some academics and 

some university students, working in the agricultural sectors. The total number of participants 

in the questionnaire was 50. 

The questionnaire consists of 12 questions, helping us to identify local practice, such as is the 

system using irrigated or rain-fed agriculture, cultivating one or several crops throughout the 

year (Table 1). These questionnaires have also been used to identify potential needs from the 

farmers themselves (Table 1), e.g.: i) how much does the farmer depend on the weather 

forecast; and ii) Are weather forecasts impacting the farmer's decision to change the crop. 

1 The person who fills out the survey. 

2 Where do you live? 

3 How many years have you been practicing agricultural work? 

4 Does your agriculture depend on weather/climatic forecast? 

5 Do you grow a single crop or several? 

6 Is the amount of rain sufficient, or do crops need to be supported by irrigation? 

7 Do you depend in your activity on growing annual crops such as wheat or cotton, or on 

growing seasonal vegetables?    

8 Do you change the crop if the climate was predicted before planting? 

9 Do you look for aids if drought is predicted? 

10 Do you care about the weather forecast for farming? 

11 Do you trust weather forecasts? 

12 why you don’t trust weather forecast? What do you need? 

Table (1): The questionnaire pattern. 

We then analyzed the questionnaire results to determine the participants’ interests in 

weather forecast. 

2.3. Testing a non-linear climate prediction system 

To provide climate prediction over northern Syria, we used ERA5 data for precipitation and 

temperature. ERA5 reanalysis has produced by ECMWF (Hans et al, 2020), It provides hourly 

estimates of a large number of atmospheric, land and oceanic climate variables. The data 

cover the Earth on a 30km grid, and resolve the atmosphere using 137 levels from the surface 
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up to a height of 80km. ERA5 includes information about uncertainties for all variables at 

reduced spatial and temporal resolutions. In this study, precipitation, temperature, sea-level 

pressure and wind data were extracted over northern Syria, and were interpolated at the 

location of a selected farm, for the period 1979-2021 (cf. Figure 2), using bilinear interpolation 

techniques. Using these long-term climatic data, we calculated the standardized precipitation 

index (SPI) to monitor the relative wetness and dryness of our study region over multiple 

timescales (Mckee et al. 1993; Qaisrani et al. 2012). SPI can be used over 1–36-month 

timescale, and can be interpreted as the number of standard deviations by which the observed 

anomaly deviates from long-term mean. Since SPI is not conducive to climate change 

associated with evapotranspiration, we also calculated the standardized precipitation minus 

evapotranspiration index (SPEI; Vicente-Serano et al. 2010). We use the SPEI to ensure that 

the limited ability of SPI to capture the effect of increased temperatures is overcome. In 

addition to analyze drought indices, we also examine the time-evolution of extreme 

temperature using maximum temperature, as drought and heat stress are both strongly 

affecting agricultural production (Zampieri et al. 2017; Solaraju-Murali et al. 2021).  

Finally, we used a neural network algorithm, which is a field of artificial intelligence, to develop 

a prediction system for extreme temperature and drought. By applying Neural Network 

techniques a program can learn by examples, and create an internal structure of rules to 

classify different inputs, such as recognising images, Neural networks must be trained before 

they can solve problems (Mijwel et al , 2019), and this is particularly interesting for risk 

forecasting (Zhang et al., 2014). It consists of inputs, which are multiplied by weight, and then 

computed by a mathematical function, which determines the activation of the neuron. 

Depending on the weights, the computation of the neuron will be different. By adjusting the 

weights of an artificial neuron, we can obtain the output we want for specific inputs. Back-

propagation neural networks (BPNNs) are a class of feed-forward neural networks with 

supervised learning rules, which means that we provide the algorithm with examples of the 

inputs and outputs we want the network to compute, and then the error is calculated as 

difference between actual and expected results. The idea of the backpropagation algorithm is 

to reduce this error, until the ANN learns the training data (Gershenson, 2003). 

Our neural network prediction system is then cross-validated using two procedures. First, we 

estimated the out-of-bag (OOB) error using bootstrap aggregation, where each new neuron is 

fit from a bootstrap sample of the training observation zi =(xi, yi). The OOB error is the average 

for each zi calculated using predictions from the neuros that do not contain zi in their 

respective bootstrap sample (Hastie et al. 2009). Second, we employed a split dataset, which 

consisted in removing three years of the original data, and to predict it from the remaining 39 

years. Both cross-validation performances were then quantified using the correlation 

coefficient between the original and predicted data, and the Mean Absolute Error (MAE), 

which is given by: 

  

3. Results 

3.1. Analysis of the questionnaires. 
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Based on our interview, 66% of the population in the freed areas of northern Syria depends 

on rain-fed agriculture, while 34% of them use irrigation systems (Figure 2a), 30% of the 

person participating in the interview confirmed that rainwater is inadequate for crop liquidity 

(Figure 2b). Interestingly, most practitioners rely on multiple crops, 60% of the person uses 

annual crops, such as cotton and wheat, and not seasonal crops, like vegetables (Tomato, 

Potato, Pepper etc…; Figure 2c). 

Since the irrigation depends on precipitation, and the evapotranspiration, when 

weather/climate forecast suggest no rainfall, most farmers adapted their practice accordingly. 

For instance, around 70% of practitioners in the area will change the type of crop, depending 

on the amount of rainfall that is predicted (Figure 2d). More specially, when weather/climate 

forecast suggest a deficit of rainfall, most practitioners considered switching to drought-

resilient crops, or to adapt the sowing season. 

When asked how confident they were about weather/climate forecasts, only 40% of 

practitioners were confident about the forecast, 30% did not have full confidence, and 30% 

admit not to trust the result of the forecast (Figure 2e). About 74% of participants responded 

that weather forecasts were useful for farmers in those areas, whereas 36% admitted not to 

pay attention to weather forecasts, as they were not accurate, or not specific, to their region 

(Figure 2f). 

 

Figure (2): Results of interviews with regional practitioners.                                          a) Rain-

fed or irrigation, b) Rainwater is adequate or inadequate, c) Annual crops or Seasonal crops, 

d) Change the type of crop or no, e) Weather forecast is confident or not, f) Weather forecast 

is useful or not. 

3.2. Recent trends in agrometeorological risks 

In this section, we discuss historical trends in drought and maximum temperature over 

northern Syria between 1979 and 2021 (Figure 3). 
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Looking at the SPI drought indices, which is only based on cumulative rainfall deficit, drought 

risks appear quite variable over the region. For instance, many prolonged drought conditions 

were found over different periods (e.g. 2004-2009, 2013-2014, 2015-2018; Figure 3a), 

highlighting recurrent risks for water scarcity over the region. However, SPI drought indices 

do not show any particular trends (Figure 3a). Using th SPEI drought indices, which account 

for the effect of potential warming temperature through increased evapotranspiration, all 

drought spells previously detected based on rainfall appear more pronounced (Figure 3b). 

More importantly, a clear trend toward drier conditions is identified from the early 2000s 

(Figure 3b). As confirmed on Figure 3c, such increasing drought risks found in the SPEI indices 

is very likely to be associated with an increasing trends in the maximum temperature, 

suggesting the extreme temperature are also becoming more frequent. 

 

Figure 3: Time-evolution of drought and extreme temperature over Northern Syria between 

1979 and 2021. a) SPI-1 (grey), -6 (orange) and-12 red) month; b) SPEI-1 (grey), -6 (orange) 

and -12 red) month; c) Maximum temperature anomalies. 

Such trends in increasing risks of drought and heat stress is particularly important for 

agricultural productions and practices, and this emphasizes the need to develop a new 

prediction system that will be used to inform regional practitioners.   
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3.3. Calibration and Validation of neural network multi-year prediction system for drought 

and heat stress. 

We therefore developed a new prediction system for maximum temperature and drought 

risks based on neural network.  The results of the validation of this model are presented below 

for the maximum temperature (Figure 4) and for the SPEI (Figure 5). 

As illustrated on Figure 4, after training the data using 10 neurons (first row) and with 40 

neurons (bottom row), the MAE was 0.1682, which is suggesting little bias in the mean, based 

on the OOB cross-validation. Following the same cross-validation technique, the correlation 

coefficient between the original and predicted data was about 0.95145, suggesting that the 

variation between the two sets of data are coherent (Figure 5). Using the split dataset cross-

validation techniques, predicting recursively periods of three years (Table 2), very similar 

cross-validation results were found. 

 
Figure (4): OOB cross-validation for max temperature data. The solid line represents the best 

fit linear regression line between outputs and targets. The R value is an indication of the 

relationship between the outputs and targets. 
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Figure (5): OOB cross-validation for the SPEI index. The solid line represents the best fit 

linear regression line between outputs and targets. The R value is an indication of the 

relationship between the outputs and targets. 

 Input Maximum Temperature MAE R 

Train 1 1979-2010 0.1680 0.9514 

Test1 2011-2015 0.1904 0.8029 

Train2 1979 -2010 without 2001- 2002-2003 0.1712 0.9444 

Test 2 2001-2003 0.1346 0.8989 

Table (2): Split-data cross-validation results for maximum temperature. 

Regarding the SPEI, the MAE was 0.046, which is suggesting very little bias in the mean, based 

on the OOB cross-validation. The correlation coefficient between the original and predicted 

SPEI data was about 0.916, suggesting that the variation between the two sets of data are 

coherent (Figure 5). 

In summary, those results on the validation of our predictive system demonstrate that it is 

possible to prediction robustly agrometeorological risks using neural network over the region. 

3.4. Toward a live monitoring system 

As the ERA5 reanalysis data may not be the most reliable climatic information over the region. 

We installed a weather station, in a farm near Al-Bab city in freed areas north of Syria (Figure 

6), to obtain real data that would help us to create more accurate and region-specific 

agrometeorological risk prediction.  
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Figure (6) Syria map, Freed Areas in green and the red arrow refer to the position of the 

weather station in the farm. 

The overall design of our remote measurement system is summarized on Figure 8. The sensors 

measure climatic parameters, and then send these data via a serial circuit to the Internet 

connection gateway (Raspberry Pi 4;Figure 7). This Internet connection gateway then store 

the climatic data on the cloud to be displayed (Figure 7). The climatic data can then be 

downloaded from the cloud.   

 

Figure (7): Diagram of the remote measurement system. 

Specifically, this system is transferring live information on maximum and minimum 

temperature, precipitation, sea-level pressure, wind speed and directions at hourly basis. 

Based on these variables, different agrometeorological indices, such as the SPI, SPEI and 

maximum temperature anomalies, are then calculated. As demonstrated above, combined 

with the neural network algorithms, agrometeorological risks can thus be predicted over the 

coming season, in order to provide live information on upcoming risks to the farmers in the 

area. Thus, after we get results of multi-year prediction for agrometeorological risks for a 

specific area, we can share these results with farmers by sending periodic messages to them. 

These data are currently still being collected, but we aim to provide a full service by the end 

of 2021. Ultimately, this system could be used to help farmers in determining the type of crop 

or the timing of plowing commensurate with the predicted weather events. 
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4. Conclusion 

In this study, we aimed at examining recent trends in drought and extreme temperature and 

at identifying end-users’ need, in order to develop a new prediction system for multi-year 

agrometeorological risks (i.e. drought and extreme heat) over the freed areas of northern 

Syria. Our results highlight the need for more reliable forecast of agrometeorological risks. 

This is particularly important over the region, as drought risks are found to increase over the 

last decades, and most of the population over the area depends on rain-fed agriculture. We 

found that increasing drought risks is strongly related to an increase in maximum 

temperature, enhancing evapotranspiration rates.  

More importantly, based on the results of our interview, regional practitioners do appear to 

adapt their practices depending on weather/climatic forecast, switching to crops that are 

more resilient to drought, or adapting their agricultural calendar. However, many regional 

practitioners highlighted the need to improve the usefulness of those predictions, and provide 

specific information on the degree of risks at specific locations and time. To answer this need, 

we tested the added-value of neural network in providing reliable prediction for maximum 

temperature and drought indices. Preliminary results are promising with minimal errors in the 

mean, and in the variance of predicted data, as compared to the original data. To provide 

more reliable information on specific sites of the freed areas of northern Syria, we 

implemented a new live monitoring system, from which weather conditions are recorded on 

hourly basis. We now aim at coupling this live monitoring system with our neural network 

prediction system for agrometeorological risks over the region. Ultimately, this system could 

be used to help farmers in determining the type of crop or the timing of plowing 

commensurate with the predicted weather events. 
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