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Abstract 

A fractional order mathematical model for COVID-19 Model is discussed. An approximate analytical expression of 

concentrations of  Susceptible individuals ,Infected individuals, Symptomatic individuals, Recovered individuals and 

Deceased individuals  by using   q-Homotopy Analysis method.  The main objective is to propose an analytical solution to 

fractional COVID-19 Model. Added with the numerical stimulation carried out using MATLAB .  
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1 Introduction 

The principal purpose of the present work is to analyze and find numerical solution for the 

fractional  mathematical model of the novel Corona Virus (COVID19), which was firstly 

reported  in China and spreader  over many countries worldwide. To understand the 

transmission dynamics of this disease, mathematical models can be very effective.[1] Since 

Fractional order system is related to memory effects, it is more effective for modeling the 

epidemic diseases. Motivated by this,  w e  purpose fractional order susceptible individuals, 

asymptotic infected, symptomatic individuals, recovered and deceased individuals SIERD model 

for the spread of COVID-19 disease[2]. We consider both classical and fractional order model 

and estimate the parameters by using the real data of Italy, reported  by the World Health 

Organization.  
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Fractional Calculus (FC) was introduced by Guillaume de l’Hopital before 300 years ago. 

Modeling by using the perception  of  FC penetrates the basic fundamentals  for many 

dynamical systems, since integer order calculus is only a narrow subset of  

Calculus having fractional order[3].  The biological phenomena  modeled through  derivatives  

of arbitrary order  carry  information  of not  only present  state  but  also past states.   FC 

considers the system with memory hereditary behaviors.  These properties are important for 

portraying the problems that arose in science and technology. There are several powerful 

methods are available for us to find the exact solutions for fractional order mathematical 

systems.  [4]In his literature we discuss about a technique q-Homotopy method which was 

introduced by  Singh. This is the graceful algorithm which is the coupling of Laplace transform 

and q-Homotopy analysis algorithm[5, p.]. The most  used mathematical models for the  

spread  of infections are the  classical ordinary  differential equations, such  as SI, SIS, SIR, SEIR, 

SIRD, and SEIRD models. In these models, each variable represents the number of individuals 

in different groups.  From the discovery of the 2019-nCoV, several models have been 

proposed to study its dynamics.  [6] Zhicheng Du proposed a simple SIR model for predicting 

novel Corona virus,  according  to  China’s first reported  data.   Yang  and  Wang presented  an 

extended  SEIR model for COVID-19 with time-varying  transmission rates  by considering the 

environmental  effects. [7] Liang described the growth propagation of three pandemic 

diseases, COVID-19, SARS, and MERS, by mathematical models and found that t h e  growth 

rate of COVID-19 is much greater than  SARS and MERS. The fractional-order differential 

equations  have been recently  used for describing the behavior of the epidemics. 

 

The fractional derivatives are dependent on the historical states, in addition to the current 

state,  and thus have memory properties.  Therefore, they are better choice for the epidemic’s 

modeling.  Furthermore, in the fractional model, the  derivative order provides a degree of 

freedom in fitting data.  Due to these properties, the fractional differential equations have 

been used for various applications in different fields 

González–Parra presented  a fractional-order  SEIR model for explaining  the out- break of 

influenza A(H1N1).  They showed that  the fractional model agrees with the real data  better  

than  the classical model[8]. Demirci proposed a fractional-order SEIR epidemic model with 

vertical transmission with considering that  the death rate is dependent on the number  of 

the total  population. Area analyzed  the data  of the Ebola  outbreak  by both  integer-order  
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and  fractional-order  SEIR  models[2]. All of the  studies  in modeling the  spread  of COVID-19 

have considered  or dinary  differential  equations, while  there  are some claims that  the  

fractional-order models have a better  fitting to the real data.  the authors  [9]have 

presented  a SEIRD model for analyzing and predicting  the COVID-19. 

SEIRD Model 

In our investigation,  we use the SEIRD model proposed, which contains  five  

populations of susceptible individuals (S), the infected individuals who are not detected 

(asymptomatic) (E),  the  symptomatic (I), recovered (R),  and  deceased (D)  individuals.  The 

describing equations of this Fractional  model are as follows [9]: 

dS

dt
= −S(r1E + r2I + η) 

dE

dt
= S(r1E + r2I) − (a1 + c1 + η)E 

dI

dt
= c1E − (a2 + c2 + η)I 

dR

dt
= a1E + a2I − ηR 

dD

dt
= c2I − ηD              ___________________(1) 

 

where recovering rate  of asymptomatic individuals  is a1, transmission  rate  of getting 

symptoms of asymptomatic individuals is c1. Similarly recovering rate of symptomatic 

individuals  is a2, deceased  rate  of them  is c2,  infection rate  of asymptomatic individuals  and  

symptomatic  individuals  are  r1and r2  respectively.  Since  detected infected people are  

isolated, we  kept  r2  = 0.Usually  at  the  starting  situation  of epidemic diseases, initial 

susceptible individuals are equal to total  population. But the impose of social distancing S(0) 

value is decreased. We   take the death  rate  caused by viral attack η  = 0.01.Let the average 

time of incubation  and initial symptoms to death   

be 5 and 11 and inverse of them  be α1,α2 .We have α1 = a1 + b1 , α2 = a2 + b2. the mean 

death rate  is 0.02  and is calculated bym =
c1c2

α1α2
 .Hence arbitrary parametes are 

a1, r1, S(0) and E(0) only. 

Caputo Fabrizio fractional SEIRD model 
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Inspired by above mention literature we have used Caputo Fabrizio operator of order α 

such that α ∈  [0, 1] to analyse the system of non-linear  differential equation given by 

Caputo  Fabrizio fractional  SEIRD model [5] 

Dt
αCF (S(t)) = −S(r1E + r2I + η) 

Dt
αCF (E(t)) = S(r1E + r2I) − (a1 + c1 + η)E 

Dt
αCF (I(t)) = c1E − (a2 + c2 + η)I 

Dt
αCF (R(t)) = a1E + a2I − ηR 

Dt
αCF (D(t)) = c2I − ηD 

with initial conditions 

S(0) = a1, E(0) = a2, I (0) = a3, R(0) = a4, D(0) = a5. ___________________(2) 

 

If α = 1 we get classical integer order Corono virus model. The numerical simulation 

are obtained by q-homotopy method. The parameters and initial conditions are arbitrary 

chosen according to Corono virus spread in Italy to check our results. In section2 , we give 

basic definitions of Caputo  Fabrizo  differential  operator  and Laplace transformation of it. 

In  section  3 , we discuss about  the  existence  and  uniqueness  of solutions  of our 

model. 

In section 4, centre around the stability results of solutions obtained by q -homotopy 

method and numerical stimulation are displayed graphically in section 5. 

section 6 is the part  of discussions of numerical  simulations.   At the end, the conclusion 

is given in section 7. 

 

    2 . Preliminaries 

 

Definition 2.1 

[10]For at least n-times differentiable function g ∶  [0, ∞]  →  R ,a Caputo  fractional  

derivative of order α >  0 is defined as, 

     Dt
αC (f(t)) =

1

Γ(n−α)
∫ (t − τ)n−α−1f n(τ)dτ

t

0
  where  n = ⌊α⌋ + 1, __________(3) 

  by changing the  kernel (t − τ)n−α−1 by the function  e
−(

α

1−α
)(t−τ)

 and 
1

Γ(n−α)
 by 

μ(α)

1−α
     

     we get New Caputo –Fabrizio fractional operator of order α. 
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Definition 2.2 

[11]For 0 <  α <  1, f ∈  H′(0, b), b >  0. The Caputo-Fabrizio fractional  derivative is 

defined by,

Dt
α                                CF (f(t)) =

μ(α)

1−α
∫ e

−(
α

1−α
)(t−τ)

f n(τ)dτ
t

0
,                      __________(4) 

M (α)  is the normalization  function depending on α > 0 with the condition 

M (0) = M (1) = 1. 

Let us take M (α) = 1 in our manuscipt. 

Definition 2.3 

For 0 < α < 1, and The Caputo-Fabrizio fractional  integral  operator  is defined by, 

Jt
α                                CF (f(t)) = (1 − α){u(t)} + α ∫ u(τ)dτ,

t

0
 t ≥ 0.                    __________(5) 

The main advantage  of  Caputo  Fabrizio operator  is there is no singularity  for t = s, but  we have it in old 

Caputo  derivative  operator. 

Definition 2.4 

The Laplace transfom for the Caputo  Fabrizio 0perator  of order 0 < α ≤ 1, m ∈ N 

is given by, u 

L ( Dt
m+αCF (f(t))) (s) =

1

(1 − α)
L(f m+1(t))L (e

−(
α

1−α
)(t)

) 

       = {
sm+1L(f(t))−smf(0)−sm−1f′(0−⋯−fm(0))

s+α(1−s)
}, __________(6) 

      In Particular, 

 

         L ( Dt
αCF (f(t))) (s)=

sL(f(t))−f(0)

s+α(1−s)
 

         L ( Dt
α+1CF (f(t))) (s)={

s2L(f(t))−s f(0)−f′(0)

s+α(1−s)
} 

 

3.Existence and Uniqueness 

By using fixed point hypothesis,  we characterize  the existence and uniqueness of the 

solution of the Corono Virus model, 

S(t) = S(0) + (1 − α){−S(t)(r1E(t) + r2I(t) + η)} + α {∫ −S(τ)(r1E(τ) + r2I(τ) + η)dτ
t

0

} 
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           E(t) = E(0) + (1 − α){S(t)(r1E(t) + r2I(t)) − (a1 + c1 + η)E(t)}

+ α {∫ {S(τ)(r1E(τ) + r2I(τ)) − (a1 + c1 + η)E(τ)}dτ
t

0

} 

 

I(t) = I(0) + (1 − α){c1E(t) − (a2 + c2 + η)I(t)} + α {∫ {c1E(τ) − (a2 + c2 + η)I(τ)}dτ
t

0

} 

 

           R(t) = R(0) + (1 − α){a1E(t) + a2I(t) − ηR(t)} + α {∫ {a1E(τ) + a2I(τ) − ηR(τ)}dτ
t

0
} 

 

            D(t) = D(0) + (1 − α){c2I(t) − ηD(t)} + α {∫ {c2I(τ) − ηD(τ)}dτ
t

0
}_____________(7)

 

We now consider the following kernals, 

ϕ1(t) = −S(t)(r1E(t) + r2I(t) + η) 

ϕ2(t) = S(t)(r1E(t) + r2I(t)) − (a1 + c1 + η)E(t) 

ϕ3(t) = c1E(t) − (a2 + c2 + η)I(t) 

ϕ4(t) = a1E(t) + a2I(t) − ηR(t) 

ϕ5(t) = c2I(t) − ηD(t) 

 

Lemma 3.1 

The  kernels  φ1, φ2 , φ3, φ4  and  φ5  given in 

7 satisfy  the  Lipschitz  condition  if the 

following inequality  holds, 

0 < χ1 , χ2 , χ3 , χ4 , χ5 < 1 

Proof: 

Let S1   ,S2   for kernal  φ1  and  E1, E2   for 

the  kernal  φ2  and  I1 , I2  for the  kernal  φ3 

and R1, R2  for the kernal φ4  and D1, D2   

for the kernal φ5  are respective  functions 

corresponds to the following relations, 
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     ‖ϕ1(t, S1(t)) − ϕ1(t, S2(t))‖

= ‖−S1(t)(r1E(t) + r2I(t) + η)

+ S2(t)(r1E(t) + r2I(t) + η)‖ 

                                              = ‖−{S1(t) − S2(t)}(r1E(t) + r2I(t) + η)‖ 

                                               ≤ (r1e + r2i + η)‖{S1(t) − S2(t)}‖  

where e = maxt∈[0,t]E(t) and i = maxt∈[0,t]I(t) 

                Let χ1
(t) = r1e + r2i + η 

Therefore, ‖ϕ1(t, S1(t)) − ϕ1(t, S2(t))‖ ≤ χ1
(t)‖{S1(t) − S2(t)}‖ 

Next consider, 

                   ‖ϕ2(t, E1(t)) − ϕ2(t, E2(t))‖             

= ‖S(t)(r1E1(t) + r2I(t)) − (a1 + c1 + η)E1(t)

− S(t)(r1E2(t) + r2I(t)) + (a1 + c1 + η)E2(t)‖ 

                              = ‖{E1(t) − E2(t)}(r1S(t) − (a1 + c1 + η))‖  

where s = maxt∈[0,t]S(t)  

                Let χ2
(t) = r1s − (a1 + c1 + η) 

Therefore, ‖ϕ2(t, E1(t)) − ϕ2(t, E2(t))‖ ≤ χ2
(t)‖{E1(t) − E2(t)}‖ 

Next , 

                   ‖ϕ3(t, I1(t)) − ϕ3(t, I2(t))‖      

= ‖c1E(t) − (a2 + c2 + η)I1(t) − c1E(t) + (a2 + c2 + η)I2(t)‖ 

                                   =‖{I1(t) − I2(t)}(a2 + c2 + η)‖  

                Let χ3
(t) = a2 + c2 + η 

Therefore, ‖ϕ3(t, I1(t)) − ϕ3(t, I2(t))‖ ≤ χ3
(t)‖{I1(t) − I2(t)}‖ 

 

For Recovered individuals , 

                   ‖ϕ4(t, R1(t)) − ϕ4(t, R2(t))‖      

= ‖a1E(t) + a2I(t) − ηR1(t) − a1E(t) − a2I(t) + ηR2(t)‖ 

                      =‖R1(t) − R2(t)(η)‖  

                Let χ4
(t) = η 

Therefore, ‖ϕ4(t, R1(t)) − ϕ4(t, R2(t))‖ ≤ χ4
(t)‖R1(t) − R2(t)‖ 

For deceased individuals , 
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                   ‖ϕ5(t, D1(t)) − ϕ5(t, D2(t))‖      

= ‖c2I(t) − ηD1(t) − c2I(t) + ηD2(t)‖ 

                                    = ‖D1(t) − D2(t)(η)‖  

                Let χ5
(t) = η 

Therefore, ‖ϕ5(t, D1(t)) − ϕ5(t, D2(t))‖ ≤ χ5
(t)‖D1(t) − D2(t)‖ 

 

 

By using recursive formula we get, 

Sn(t) = (1 − α){ϕ1(t, Sn−1(t))} + α ∫ ϕ1(τ, Sn−1(τ))dτ
t

0

 

En(t) = (1 − α){ϕ1(t, En−1(t))} + α ∫ ϕ1(τ, En−1(τ))dτ
t

0

 

In(t) = (1 − α){ϕ1(t, In−1(t))} + α ∫ ϕ1(τ, In−1(τ))dτ
t

0

 

Rn(t) = (1 − α){ϕ1(t, Rn−1(t))} + α ∫ ϕ1(τ, Rn−1(τ))dτ
t

0

 

                       Dn(t) = (1 − α){ϕ1(t, Dn−1(t))} + α ∫ ϕ1(τ, Dn−1(τ))dτ
t

0
_______(8) 

 

Theorem 3.2 

If [(1 −  α)ψi +  αψi t]  <  1 for t ∈  [0, T ] and some ψi >  0, ∀i =  1, 2, 3, 4, 5.   

Then  (2)  has a solution which is zero solution. 

Proof:   

By the application  of triangular inequality, We get, 

‖An(t)‖ = ‖Sn(t) − Sn−1(t)‖

≤ (1 − α)‖ϕ1(t, Sn−1(t)) − ϕ1(t, Sn−2(t))‖ 

+  α ‖∫ ϕ1(τ, Sn−1(τ)) − ϕ1(τ, Sn−2(τ))dτ
t

0

‖                                                         

                   ‖  Bn(t)‖ = ‖En(t) − En−1(t)‖            

≤ (1 − α)‖ϕ1(t, En−1(t)) − ϕ1(t, En−2(t))‖ 

+ α ‖∫ ϕ1(τ, En−1(τ)) − ϕ1(τ, En−2(τ))dτ
t

0

‖ 
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            ‖Cn(t)‖ = ‖In(t) − In−1(t)‖

≤ (1 − α)‖ϕ1(t, In−1(t)) − ϕ1(t, In−2(t))‖

+ α ‖∫ ϕ1(τ, In−1(τ)) − ϕ1(τ, In−2(τ))dτ
t

0

‖ 

      ‖Dn(t)‖ = ‖Rn(t) − Rn−1(t)‖

≤ (1 − α)‖ϕ1(t, Rn−1(t)) − ϕ1(t, Rn−2(t))‖

+ α ‖∫ ϕ1(τ, Rn−1(τ)) − ϕ1(τ, Rn−2(τ))dτ
t

0

‖ 

     ‖Fn(t)‖ = ‖Dn(t) − Dn−1(t)‖

≤ (1 − α)‖ϕ1(t, Dn−1(t)) − ϕ1(t, Dn−2(t))‖

+ α ‖∫ ϕ1(τ, Dn−1(τ)) − ϕ1(τ, Dn−2(τ))dτ
t

0

‖ 

 

 

Since the kernals satisfy the Lipschitz condition, 

‖An(t)‖ = ‖Sn(t) − Sn−1(t)‖ 

                  ≤ (1 − α)χ1
‖Sn−1(t) − Sn−2(t)‖ +  αχ1 ∫ ‖(Sn−1(τ) − Sn−2(τ))dτ‖

t

0

 

‖Bn(t)‖ = ‖En(t) − En−1(t)‖ 

                  ≤ (1 − α)χ2
‖En−1(t) − En−2(t)‖ +  αχ2 ∫ ‖(En−1(τ) − En−2(τ))dτ‖

t

0

 

‖Cn(t)‖ = ‖In(t) − In−1(t)‖ 

                  ≤ (1 − α)χ3
‖In−1(t) − In−2(t)‖ +  αχ3 ∫ ‖(In−1(τ) − In−2(τ))dτ‖

t

0

 

‖Dn(t)‖ = ‖Rn(t) − Rn−1(t)‖ 

                  ≤ (1 − α)χ4
‖Rn−1(t) − Rn−2(t)‖ +  αχ4 ∫ ‖(Rn−1(τ) − Rn−2(τ))dτ‖

t

0

 

 

‖Fn(t)‖ = ‖Dn(t) − Dn−1(t)‖ 

                  ≤ (1 − α)χ5
‖Dn−1(t) − Dn−2(t)‖ +  αχ5 ∫ ‖(Dn−1(τ) − Dn−2(τ))dτ‖

t

0

 

_____________(9) 

 

By using Recursive formula successfully we get, 
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‖An(t)‖ ≤ ((1 − α)χ1 +  αχ1t)
n

‖S0(t)‖which proves that  the solution exists and is 

continuous. Similar proof for Bn (t), Cn (t), Dn (t), Fn (t) 

Let S(t) = Sn(t) + ∆1(n)(t) 

E(t) = En(t) + ∆2(n)(t) 

I(t) = In(t) + ∆3(n)(t) 

R(t) = Rn(t) + ∆4(n)(t) 

D(t) = Dn(t) + ∆5(n)(t) 

where ∆1(n) (t), ∆2(n) (t), ∆3(n) (t), ∆4(n) (t), ∆5(n) (t) are remaining terms of solutions. 

 

‖S(t) − Sn+1(t)‖ = (1 − α)‖ϕ1(t, S(t)) − ϕ1(t, Sn(t))‖ 

                                                           + α ∫ ‖ϕ1(τ, S(τ)) − ϕ1(τ, Sn(τ))‖dτ
t

0
  

≤ (1 − α)χ1
‖S(t) − Sn(t)‖ +  αχ1 ∫ ‖(S(τ) − Sn(τ))dτ‖

t

0

 

≤ (1 − α)χ1‖∆1(n)(t)‖ +  αχ1 ∫ ‖∆1(n)(τ)dτ‖
t

0

 

Since  ||∆1(n)(t)|| →  0 when n →  ∞ we have ||S(t)  −  Sn + 1 (t)||  ≤  0. 

S(t) = lim
n→∞

Sn(t ) 

Similarly,  

E(t)

= lim
n→∞

En(t),

I(t)

= lim
n→∞

In(t), 

R(t)

= lim
n→∞

Rn(t) 

D(t) = lim
n→∞

Dn(t),                                                                            __________(10) 

are the solutions of system equations  in (2). 
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      Theorem 3.3 

There exists a unique solution of the system given by, (2) . 

Proof: 

Let there is another  solution of the system (2), say 

S∗(t), E∗(t), I ∗(t), R∗(t), D∗(t). let us consider, 

‖S(t) − S∗(t)‖      ≤ (1 − α)‖ϕ1(t, S(t)) − ϕ1(t, S∗(t))‖ +  α ∫ ‖ϕ1(τ, S(τ)) − ϕ1(τ, S∗(τ))‖dτ
t

0

 

     ‖E(t) − E∗(t)‖                  

         ≤ (1 − α)‖ϕ2(t, E(t)) − ϕ2(t, E∗(t))‖ + α ‖∫ ϕ2(τ, E(τ)) − ϕ2(τ, E∗(τ))dτ
t

0
‖  

‖I(t) − I∗(t)‖                  

             ≤ (1 − α)‖ϕ3(t, I(t)) − ϕ3(t, I∗(t))‖ + α ‖∫ ϕ3(τ, I(τ)) − ϕ3(τ, I∗(τ))dτ
t

0

‖ 

‖R(t) − R∗(t)‖                  

            ≤ (1 − α)‖ϕ4(t, R(t)) − ϕ4(t, R∗(t))‖ + α ‖∫ ϕ4(τ, R(τ)) − ϕ4(τ, R∗(τ))dτ
t

0

‖ 

‖D(t) − D∗(t)‖                  

            ≤ (1 − α)‖ϕ5(t, D(t)) − ϕ5(t, D∗(t))‖ + α ‖∫ ϕ5(τ, D(τ)) − ϕ5(τ, D∗(τ))dτ
t

0

‖ 

 

Now, ‖S(t) − S∗(t)‖ ≤ (1 − α)χ1
‖S(t) − S∗(t)‖ +  αχ1t‖S(t) − S∗(t)‖ 

‖E(t) − E∗(t)‖ ≤ (1 − α)χ2
‖E(t) − E∗(t)‖ +  αχ2t‖E(t) − E∗(t)‖ 

 

‖I(t) − I∗(t)‖ ≤ (1 − α)χ3
‖I(t) − I∗(t)‖ +  αχ3t‖I(t) − I∗(t)‖ 

‖R(t) − R∗(t)‖ ≤ (1 − α)χ4
‖R(t) − R∗(t)‖ +  αχ4t‖R(t) − R∗(t)‖ 

‖D(t) − D∗(t)‖ ≤ (1 − α)χ5
‖D(t) − D∗(t)‖ +  αχ5t‖D(t) − D∗(t)‖ 

This implies that 

          ‖S(t) − S∗(t)‖ {1 − {(1 − α)χ1 + αχ1t}} ≤ 0 

         ‖E(t) − E∗(t)‖ {1 − {(1 − α)χ2 + αχ2t}} ≤ 0 

         ‖I(t) − I∗(t)‖ {1 − {(1 − α)χ3 + αχ3t}} ≤ 0 

         ‖R(t) − R∗(t)‖ {1 − {(1 − α)χ4 + αχ4t}} ≤ 0 
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         ‖D(t) − D∗(t)‖ {1 − {(1 − α)χ5 + αχ5t}} ≤ 0 

Hence, S(t) = S∗(t), E(t) = E∗(t), I(t) = I∗(t), R(t) = R∗(t), D(t) = D∗(t) __________(11) 

 

4 .     q-  Homotopy Analysis Method 

We consider the Caputo-Fabrizio fractional derivative non-linear equation as

( )( ) ( )( ) ( )( ) )(tftuNtuRtuDCF =++
,where ( )( )tuDCF 

 is Caputo-Fabrizio derivative of  ( ),tu R is 

linear operator, N is nonlinear operator , )(tf  is known function. 

By taking Laplace transform we get, 
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Non- linear operator defined in Homotopy method is, 
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,0   and  nn − 1 .                     _____________(12) 

We construct a Homotopy deformation equation, 

( ) ( )( ) ( )( )qtNthqHtuqtLnq ;)()(;1 0  =−−
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If q=
n
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, then we get 
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
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n
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;  = ( )tu , 

If q=0, then we get ( ) ( )tut o=0;  

As we vary q from 0 to 
n

1
 , ( )qt;  converge to ( )tu  from ( )tuo . 
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            We can expand  (t; q) by using Taylor’s series expansion  as, 
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The solution of nonlinear system is given by 
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Equating power of  q on both side we get the q-homotopy recursive equation as, 

( ) ( )( ) ( )( )tuRtxhHtuktuL mmmmm 11 ),( −− =−
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_____________(15)

 

where 

( )( )tuR mm 1−


=
( )

( )( )
1

1 ;,

!1

1
−

−





− m

m

q

qtxN

m


 at q=0    
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_________(16)

 

where     






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1,
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m
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By solving this kind of recursive equations, we get the components of  components of    

 q-Homotopy series solutions. 
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Homotopy equation becomes, 
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By replacing m values as 1,2,3…we get numerical solution for the system. 

 

5.     Illustration  

In this section, we find the numerical simulations  of Caputo  Fabrizio  Corona virus model with 

initial conditions S0 = a1 = 3.6 × 106 , E0  = a2 = 1.24 × 104, I0 = a3 =221 

R0  = a4 = 1, D0   = a5 = 7,for various values of 0 < α < 1.The corresponding parameters with 

the values are given in table  1.By using q-Homotopy  method  ,we get three terms of approximate  

solution of fractional  order Corona virus model 

Parameter Initial values 

r1 9.3*10̂-8 

r2 0 

A1 0.17 

M 0.02 

alpha2 1/11 

alpha1 1/5 

n 2.08547*10(̂-5) 
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Table-1 

 

 
 

Figure -1 Figure -2 

 

 

Figure -3 Figure -4 

 

Figure -5 
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6.Numerical Results and Discussion 

Figure 1 to 5 shows the graphical representation of numerical simulation for suscepti- ble individuals 

S(t), Asymptotic individuals E(t),Symptotic individuals I(t),Recovered individuals  R(t)  and  deceased 

individuals  D(t)  for distinct  values of α= 0.7, 0.8,0.9,and  1.0 using q-Homotopy  method.   For 

the  period of 30 days ,figure 1 shows that  susceptible individuals  S(t)  gradually  decreases as time 

increases but  Asymptomatic  individuals  E(t),Symptomatic individuals  I(t),  Recovered individuals  

R(t)and Deceased D(t)  are increase monotonically as time increases.   

It  is observed that  fractional order alpha also is directly proportional  to number of people in 

the susceptible class, and  the  same alpha  is indirectly  proportional  to number  of people in the  

Asymptotic  individuals  E(t),  Symptotic  individuals  I(t),  Recovered individuals  R(t)  and deceased 

individuals D(t) classes. After 15 days, number of peoples E(t) and R(t) approximately  same. This 

shows that people can recovered their normal life gradually. 

7.Conclusion 

In this  work,  we analyzed  the  transmission  dynamics  of Caputo-Fabrizio  Corono virus model.  

We discuss about  Existence,  uniqueness and numerical simulations  of Corona virus model. By 

using the numerical series solution obtained by q-Homotopy method  ,we can predict  the future  

performance viral transmission.  Here we used a set of parameters from the country  Italy.  In the 

future,  we can simulate  the same technique to other part  of world and also we can use the same 

methodology to other epidemic spreading diseases. 
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