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ABSTRACT 

Purpose of the research: The most difficult aspect of robot navigation issues is considered path planning. Scientists have been 

studying this field for years. This domain is undergoing massive transformations. For effective path planning, a variety of 

approaches are used. As a result, establishing a secure robotic path in a populated environment is a critical need for most robot 

project’s achievements. 

Recent Findings: Numerous updates and novel artificial intelligence algorithms are being abused, and they are now available to 

the public. 

Summary: This method is developed primarily to increase the quality and efficacy of globalized path planning for an 

autonomous mobile robot in an environment depending on the grid with the avoidance of uncertain static 

obstacle characteristics. The behavior of an autonomous robot can be influenced by the global path quality with respect to path 

consistency, smoothness, and security. The effectiveness of the Ant Colony Optimization (ACO) method has been enhanced in 

this work the multi-direction support. 

Result: Curvature, longitudinal, and lateral coordinate restrictions are all included in the overall cost. Furthermore, for collision 

identification, the collection of optimum local trajectories is examined for every unpredictable obstacle at each step movement. 

Simulations are being used to contrast the findings to prior globalized path planning algorithms in order to distinguish the quality 

and efficacy of the developed technique in diverse constraint settings. 

Keywords: Ant Colony Optimization (ACO), motion planning, obstacle avoidance, Challenges in path planning.  

1. INTRODUCTION 

Owing to its numerous applications in a variety of fields, the notion of autonomous mobility is well in 

recent years [1]. As a result, much investigation has been conducted to increase mobile robot autonomy. 

Mobile robots are used in a variety of fields, including industrial, military, and transportation sectors [2]. 
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Autonomous robots have been employed in sectors for logistics storage, flexible production, and smart 

inspections. They are highly efficient than people and also accessible at a cheaper cost. Decision, 

perception, and action have been used to provide mobile robots with autonomous behavior 

autonomous [3]. Sensor-based informational data obtained from the environment are triggered to lower-

level control based on judgment abilities in perception. The decision stage is familiarly known as the 

motion planning level. Numerous techniques are proposed to increase the capacity of mobile robots to 

coordinate their movements. In the intermediate phase among the actuation and perception phase, 

motion planning is accountable for the autonomous behavior of the robot. As per issue estimates, motion 

planning is generally divided into two categories namely globalized path planning (GPP) as well as 

localized path planning (LPP).  

GPP is a fundamental approach for robots to find the best path from their starting point to their end goal. 

To find an ideal global path, some alternative techniques have been proposed. The majority of GPP 

approaches are dependent on discrete search optimization, which has been implemented in a grid-based 

framework. The path generated by the map grid is made up of sub-optimal locations linked by straight-

line segments as well as includes abrupt bending. The global path containing the bends can create jerky 

movement in robots, as sudden changes in velocity as well as acceleration have an impact on the energy 

utilization of robots. A smoother path, on the other hand, will provide a mobile robot with a pleasant and 

secure ride. As a result, the curvilinear global path is already identified as a viable option for improved 

navigation in contemporaneous settings. In the Defense Advanced Research Projects Agency (DARPA) 

automated competition (2012), for instance, a vehicle followed a pre-determined curved path [4]. 

Because of its restricted functionality, globalized path planning techniques such as the potential 

functional theory [5] as well as simulated annealing algorithmic approach [6] are termed classic methods.  

Han-ye Zhang [7] investigated a variety of approaches, including search algorithms depending on the 

graph (Visibility Graph, Tangent, and Voronoi Graphs) [8-11], Cell Decomposition method [12], Free Space 

method [13], Topological approach [14], Probabilistic Roadmap approach [15], Path search algorithmic 

approach (Dijkstra, D*, and A* algorithmic approach) [16-23], Artificial Intelligence Algorithmic approach 

(such as GA, ANN, PSO, ACO, SA) [24-26]. The length, duration, and weight of the path have been 

the primary parameters for path planning. The hit point, as well as the leaving point, is utilized along a 

route to build a basic Bug algorithm, often known as a common-sense algorithm [27]. Surprisingly, this 

algorithm is confronted with several difficulties. Bug1 algorithm [28] is later created based on bug 

algorithm having addressed confronted problems. ACO is the most widely used evolutionary technique 

for solving optimization issues. This is frequently employed to offer optimum solutions to globalized path 

planning challenges because of benefits including strong feedback data, resilience, better-distributed 

computation [29], and the flexibility to be readily integrated with different path-planning techniques.  

2. CONTRIBUTION  

The inspiration stems from research published in the state-of-the-art research that aims to propose a 

combined strategy for improving an autonomous robot's path planning skills in a knowing and 

unknowing statics constraint environment. 
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1. In the localized path planning algorithmic approach, the overall trajectory is determined by pre-

defined directional points. This method provides both globalized and localized trajectory planning 

capabilities. An enhanced ACO version is given for global route planning which delivers an 

optimum trajectory with economical computing capabilities. 

2. The ACO is being improved with the addition of multi-directional algorithmic approaches. 

Pheromone concentration is low at the first ACO iterations, thus ants must travel randomly to 

attain a goal point. Its computational cost is high and also time-consuming as a result of this. As a 

result, the computing performance of the ant colony method must be improved. 

3. As a result, the Multi-directional method is used to arrange the regional nodes with an 

increased chance of getting an ideal global path. This improves ACO's ability to effectively supply 

global paths in complicated mappings. Employing the MPD trajectory performance measure, the 

routing reliability significantly increased. ACO generates a series of optimum grids, all of which 

are denoted using its center point, and then the global route is made up of straight-line segments 

with acute bends generated sequentially by linking grid points. 

 

3. LITERATURE REVIEW  

In modern times, great scientific attempts have been performed both in globalized and localized route 

planning approaches to improve the path planning efficacy of autonomous mobile robots. Due to its high 

benefits, ACO adopted globalized route planning in this research. ACO, on the other hand, seems to have 

the disadvantages of pheromone updating and delayed convergence. Several techniques are being 

offered to overcome this issue [30]. To increase the converging rate, the rate of pheromone has been 

adjusted during an effective iteration of the ACO algorithm [31]. The rate of convergence with 

searchability is improved by updating the pheromone updating expression and adaptively changing the 

volatilization rate, according to [32]. An early route is already developed and translated into preliminary 

pheromone dispersion in ACO algorithmic approach to prevent blind searching. In order to improve the 

capability of obstacle identification, a geometric technique is presented to maximize the global path 

followed by local dispersion of pheromones are derived from a force component specified in an artificial 

potential field [33]. Fuzzy logic is used with ACO to decrease repeated learning mistakes in [34]. Heuristic 

features enhanced ACO optimization efficiency in diverse complexity mappings, according to [35]. Linear 

interpolation is used in the discrete-search method for smoothing the global route [36]. 

The MDP model was utilized to produce a smooth route and enhance navigation [37]. Such methods may 

help ACO become more efficient. Moreover, because of its hardness as well as abrupt bends, then the 

path quality acquired in the environmental grid does not meet the dynamic characteristics of an 

autonomous mobile robot. A curved road is created with interpolated cubic spline in the localized route 

searching, and a collection of viable trajectories are constructed along the roadside to ignore static 

obstructions. A predictive method is utilized to ignore static as well as moving impediments while creating 

a curved road from preset directional points [38]. To provide optimum controlling of motion, longitudinal 

as well as lateral motions are incorporated inside the steering relative coordinates [39]. 

Utilizing localization methods dependent on LIDAR, the global route reference is generated from the 
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vision mapping utilizing lane-level precise localization data [40]. To generate a smoother globalized path 

from a digital mapping employed conjugation of non-linear optimization gradient and a cubic spline 

curves, as well as a curvilinear coordinate’s structure to acquire optimum trajectories [41]. Similarly, such 

approaches are good at solving localized path problems but not so good at finding the best-

globalized path in a complicated constraint environment. 

 

4. RT SHORTEST PATH PLANNING ALGORITHM: 

This method was designed to discover the shortest path and avoiding obstacles of various forms. This 

mobile robot analyzes the whole area along the boundary for viable routes to the target point. Assuming, 

S as the starting location and G as the goal point. The weight of the path is indicated by Wp. Sd 

represents the shortest route or optimal path from the beginning location to the destination position, 

where d represents the distance of distance. 

𝑆𝑑 ≤ 𝑙 + 1 2⁄ ∑ 𝑂𝑖𝑁
𝑖=1                                                                                                                    (1) 

To determine the shortest distance of the specified terrain, the preceding formula is changed. 

𝑊𝑟 =
𝑊

𝑈𝑖𝑊𝑜𝑖
𝑊𝑜𝑖                                                                                                                              (2) 

Resolve the upper bound working space to the lower bound free space using the 𝑊𝑟  formula. This is 

referred to as a necessary workspace. 

4.1 PROBLEM OF THIS ALGORITHM: 

This algorithm's fundamental challenge is to determine the shortest path in specified terrain while 

eliminating rotational and transformation barriers. The primary important goals of this issue need to avoid 

obstacles as well as to use this method to determine a path from the beginning aim to the finishing 

location. In MATLAB, an autonomous mobile robot environmental code model is created. The Euclidean 

distance among two points has been utilized to calculate the distance among coordinating points. 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = √(𝑥1 + 𝑦1)2 + (𝑥2 + 𝑦2)2                                                                                     (3) 

4.2. ANT COLONY OPTIMIZATION ALGORITHM 

4.2.1. Acquiring Directional Information with Heuristic method: 

In a conventional ACO, the preceding node's probability is determined using the roulette wheel technique 

is given below: 

𝑃𝑖𝑗
𝑘(𝑡) =

{
 

 (𝜏𝑖𝑗(𝑡))
𝛼
∙ (𝑖𝑗(𝑡))

𝛽

∑ (𝜏𝑖𝑗(𝑡))
𝛼
∙ (𝑖𝑗(𝑡))

𝛽

𝑠∈𝑎𝑙𝑙𝑜𝑤𝑘

𝑠 ∈ 𝑎𝑙𝑙𝑜𝑤𝑘

0                                         𝑠𝑎𝑙𝑙𝑜𝑤𝑘

                                                                         (4) 
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
𝑖𝑗
(𝑡) =

1

𝑑𝑖𝑗
                                                                                                                                    (5) 

𝑑𝑖𝑗 = √(𝑥𝑗 − 𝑥𝑖)
2
+ (𝑦𝑗 − 𝑦𝑖)

2
                                                                                                   (6) 

Here, 𝜏𝑖𝑗  represents the grid path i towards grid j's pheromones, and 
𝑖𝑗

 is denoted as the heuristic 

information from i grid path towards j grid. 𝛼 is denoted as the pheromone concentration-stimulating 

factor that determines the pheromone route's proportional effect. 𝛽 is the visibility-stimulating factor 

that determines the heuristic information's proportional effect. The distance among nodes i and j is 

represented as 𝑑𝑖𝑗. The coordinates of i grids are (𝑥𝑖, 𝑦𝑖) and then j grid coordinates is (𝑥𝑗 , 𝑦𝑗). 𝑎𝑙𝑙𝑜𝑤𝑘 is 

a grid sets that ants may pick from while they're in grid i (otherwise, they're all the grids excluding 

the taboo grids as well as an obstacle). 

4.2.2. Coverage and Updating method: 

The preceding node is determined via the roulette wheel technique in the classic ACO algorithmic 

approach, and the process is continued till the goal point is reached. Pheromone tests are modified in 

accordance with path planning's length once each iteration is done. Since it allows ants to ignore all sub 

standardized pheromone tests and enhance their coverage efficacy to discover a shorter path, those 

inadequate pheromones vaporize during pheromone updating for each test, and the highest quality 

pheromones are upgraded to tests historical record. At the completion of every cyclic formula is utilized 

to increase each vertex's pheromone quantity: 

{
𝜏𝑖𝑗 = (1 − 𝜌)𝜏𝑖𝑗 + ∆𝜏𝑖𝑗

∆𝜏𝑖𝑗 = ∑ ∆𝜏𝑖𝑗
𝑘𝑚

𝑘=1 ,    0 < 𝜌 < 1
                                                                                                   (7) 

Here, m represents the number of ants, 𝜌 is the representation of the evaporation rate of pheromones. 

The pheromone value which the k ant leaves in the journey of grid i towards grid j is represented by ∆𝜏𝑖𝑗
𝑘 . 

The ant-cycle-system paradigm is used in this paper, and ∆𝜏𝑖𝑗
𝑘  is stated below: 

∆𝜏𝑖𝑗
𝑘 (𝑘) = {

𝑄1/𝐿𝑘(𝑡) 𝑖𝑓 𝑎𝑟𝑐(𝑖, 𝑗)𝑖𝑠 𝑢𝑠𝑒𝑑 𝑏𝑦 𝑘 𝑖𝑛 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑡

0                                                     𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                 (8) 

𝑄1 is a constant in this equation. The path length in which the ant k is seeking for is represented as 𝐿𝑘(𝑡). 

4.3. IMPROVED ACO ALGORITHM  
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Figure 1: Visiting nodes around the center node. 

 

 

Figure 2: Visiting ant direction. 

In ACO algorithmic approach, ants begin their searching in the map, and then after acquiring succeeding 

iteration; a fresh pheromone in this network reflects a particular route approaching a goal. Following 

several repetitions, the ant's trajectories begin to converge in response to a greater pheromone 

concentration. The ants may not possess adequate guidance via the pheromone concentration in the early 

generations. Thus, all move in diverse paths in pursuit of a destination node and whether the map's 

searching area is big and complicated, it takes longer. To aid the ACO, a new ACO algorithmic 

approach with multi-direction pathway searching characteristics is created. The potential linking nodes 

along with the node center are depicted in Figure 1. Every node's overall cost value (n) is nothing but the 

addition of g (n) as well as h (n), must be determined.  

The Openlist, as well as Closedlist matrices, are used to list, then to identify visiting nodes. To minimize 

recurrence, the Openlist is tagged using visited nodes, while the Closedlist includes a database of barriers 
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and priorly picked nodes. The preceding node is chosen depending on the f(n) of value with the lower 

cost. This will attempt to look for the target node till it finds it. The position of every parent node has been 

recorded in X Parent and Y Parent to obtain the optimal nodes. This method generates many goals across 

the shortest distances between the starting point and the final target. In the meantime, the optimum 

nodes chosen by using the multi-Directional algorithmic approach are insufficient to finish a 

globalized path on their own. As a result, ACOs are used to bridge the gap and establish a global route. 

 

 

Figure 3: Control architecture for robot navigation. 

In a grid-based setting, ACO was used to find the best-globalized path from a starting point to a target. 

ACO receives directional guidance from a multi-directional algorithmic approach. In conventional ACO, 

the ants must explore all potential grids, with the succeeding grid determined using the roulette wheel 

technique, and the process continued till the goal location is found. That took a long time to compute. In 

a grid-based system, the grid obstacle is denoted by 1 and then the free grid is denoted by 0. Ant may 

travel in eight different directions from the central grid in the lack of other restrictions, as illustrated in 

Figure 2. The other grid directions can be picked by employing heuristic data in the case of obstacle 

identification. The cost of removing a particular grid direction that does not preserve offset distances 

with grid obstacles is defined by the earlier restrictions policy. To increase efficacy, improved ACO 

heuristic features have been utilized. The ant system has been used to enhance the phenomenon update 

as well as premature convergence technique MAX_MIN. The basic autonomous mobile navigation with 

control architecture is shown in Figure 3. 

4.3.1. Algorithm: 

To summarize, the following are the steps involved in path planning for autonomous mobile robots using 

the enhanced ant colony algorithm (ACO): 
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Step 1: The surrounding environment is represented using the grid technique, and from the initial point 

the robot starts moving towards the goal point are specified. 

Step 2: Set up the ant colony for the first time. Fix the ant counts, as well as its parameter that affects the 

heuristic value, the relative effect of the pheromone path, and few other relevant factors. 

Step 3: The table of taboos should be updated. Append the present node to the relevant taboo table by 

placing the ant in it. 

Step 4: There is a stalemate in the procedure. This will determine if ants are stuck in a stalemate situation 

based on the taboo table. When the ants become stuck in a deadlock, then the retraction method is used 

where the deadlock node has been added to the taboo table. This will determine if the ants have reached 

the goal place. Step 6 would be activated when the ants meet the targeted point; else, Step 5 will be 

activated. 

Step 5: Choose the following grid. This will determine the functional probability as well as the heuristic 

function. Lastly, this will choose the subsequent viable grid using the roulette technique. Step 6 will be 

activated whether the ants approach the targeted grid; else, Step 3 will be activated. 

Step 6: Whether the ants achieve the targeted node, Step 3 will be repeated still every ant has 

completed searching its target throughout its iteration phase, after which Step 7 will be performed. 

 Step 7: Pheromone should be updated. This will modify the route pheromone and assess unless it 

matches the convergence requirements after every iteration when the number of iterations fulfills the 

inequality 𝑁 ≤ 𝑁𝑚𝑎𝑥. This will retreat whether the convergence requirements are met. This will proceed 

to Step 3 when the requirement is not yet met. The iteration counts are reordered any further when the 

inequality 𝑁>𝑁𝑚𝑎𝑥 is satisfied. As soon as the last criterion is met the outcome is produced. 

5. EXPERIMENTAL ANALYSIS 

In a grid-based setting, ACO is used to generate a series of optimum point grids in the coordinates of (x, 

y). Pathway candidates are otherwise familiar known to be center locations. The globalized route 

generated from path candidates is made up of substandard straight lines with severe bending, resulting 

in the rough path illustrated in Figure 4. This path isn't viable to sustain smoother and secure driving due 

to the robot's non-holonomic characteristics. LI is utilized in Figure 4 to create a midway among each of 

the two route possibilities shown by the dotted line. 

𝑓(𝑥) = 𝑦 =
𝑦1−𝑦2

𝑥1−𝑥0
(𝑥 − 𝑥0) + 𝑦0  

Table 1: State action model of MDP.  

STATE ACTION BENEFIT 

{𝑚|𝑚 ∈ 𝑜𝑝𝑡𝑖𝑚𝑢𝑚 𝑝𝑎𝑡ℎ 𝑝𝑜𝑖𝑛𝑡 𝑠𝑒𝑡} 
Either removing and keeping m in path 

0 implies the removal of m and 1 implies kept m 
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Table 2: Beneficial novel policy. 

If the initial neighbor directional grid is m 
𝑀𝑖𝑑𝑝𝑜𝑖𝑛𝑡(𝑚𝑖 − 1&&𝑚𝑖 + 1) ≠ 𝑚𝑖  in which the 

path point count is represented as i. 

Annotation 
The blending point notation is given as 𝑚𝑖. 

Benefits 
Assigning 0 or 1. 

 

A unique cost policy has been created to assess grid points to get effective computing outcomes. The 

primary goal of this assessment mechanism is to eliminate path points that do not comply with the 

costing policy. The costing policy consists mostly of the following stages: 1. The Mid-Point Assessment 

technique is developed to determine the direction of every point in a series. 𝑚𝑖  represents the 

assessment path point, whereas 𝑚𝑖 − 1 represents the first neighbors and 𝑚𝑖 + 1 represents second 

neighbors. The path points produced by ACO are shown in Figure 5, which illustrate the sharp edges. Every 

grid point would be evaluated at its halfway to determine its orientation to neighbors, according to the 

costing policy. 2. The points of the path are evaluated using the MDP modeling approach shown in Table 

1. When the two neighbor’s midpoint value is identical to the centralized point, as stated in costing policy 

Table 2, this point would be removed from the path. As shown in Figure 6, point m does not meet the 

costing policy is assigned a 0 value, thus it is removed from the directional path. 

 

Figure 4: MDP model in between two points. 
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Figure 5: Determination of midpoint using costing policy. 

 

Figure 6: Removal of bad points from the navigation path. 

 

6. CONCLUSION 

This study presents a combined strategy for an autonomous mobile robot to handle and plan path issues 

in dynamic as well as static restrictions environments, which are tested on an autonomous robot in the 

real world. The reference global route is collected in the first section using a multi-directional method and 

an enhanced ACO algorithmic approach. To assess the globalized path points created in an environment-

dependent on the grid, an MDP model depending on the beneficial scheme is proposed. Using arc-length 

parameterization, a globalized curvilinear route is generated from the collected waypoints. To cope with 

dynamic limitations in the environment, a lateral, as well as longitudinal coordinates set, is created to 
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manage an appropriate distance offset from a globalized reference path and to construct a series of 

trajectories along the global pathway. A costing policy is also given for selecting the constraints-free 

smoother trajectory. In such a way, an ideal strategy to improving the effectiveness of diverse mappings 

is created in comparison to previous grid-based systems in a challenging environment, taking into account 

security, trajectories smoothness, and consistency path. 
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