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ABSTRACT 

The purpose of this study is to determine the accurate orientation and position of the intelligent dummy system for the Verdino 

autonomous robot. The position and orientation of the autonomous robot are calculated using an odometric mathematics 

model derived from the robot's trajectory equations. The odometry encoders are the system inputs, and the wheel diameter 

and distance are used to parameterize the model. This model is used to get the optimum nominal parameters by doing a 

minimal square minimization. This model is updated with a measurement of the real-time wheel diameter to improve the 

accuracy of the results. Based on data, an odometric model is trained using a neural network model. This neural network is put 

to the test, and the results indicate that by employing a smart odometry system, the neural network can improve estimate 

accuracy. 

Keywords: Autonomous robot, Neural Network, Odometry system, Position, and orientation estimation.  

1. Introduction 

Self-localization, i.e. the autoallocation and orientation of a vehicle/robot over time is one of the major 

problems lately highlighted in autonomous system applications. A platform must continually retain and 

posture information for autonomous navigation, obstacle avoidance and object tracking. The odometry 

estimate involves the computation of relatively different poses between two or more sensor data 

frames, as regards translations and rotations. It monitors the autonomy and is followed by a procedure 
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that integrates these changes in terms of position and with respect to a beginning state, resulting in a 

global position 

Wheel odometry is one of the key types of self-containment of robots utilised as 2 and 4-wheel robots 

for various skid-steel robots. The right and left wheels may be moved in various directions and 

velocities, regardless of vehicles. A well-known example of this kind of robotics is NASA's Mars 

Exploration Rover (MER)[1]. They are suitable for a range of applications. It's important. The wheel 

odometry technique utilises robot-mounted encoders to track every wheel's number of rotations. The 

number of rotations included in a dynamic model describing the location of the existing robot in respect 

to the beginning point [2]. 

Different location techniques including GPS, laser, markers for radio frequency, natural or artificial 

beaches and others[3] utilise odometry in many ways. [4]. If mechanical odometry is not possible, 

optical odometry[4] may be used to determine the location of the vehicle based on picture differences. 

A complex sensor system is built on many sensors to achieve position and orientation[5] for an 

independently polluted vehicle. In certain methods, Kalman filters [7], Monte Carlo-based particle filters 

[8,] and others are also utilised. Sensors without odometry often need external environmental 

information, thus in many circumstances they are useless. For example, when a vehicle views the sky, 

the GPS service is lost[9]. When we place beacons, it is necessary to structure the whole environment, 

otherwise a laser may detect the beacons in the environment, and these features must, like prior 

occasions[10], be in the field of laser activity. The work's major addition is the use of an autonomous 

robot sensor set to enhance the accuracy by monitoring the roll diameter in real time. In order to 

anticipate the location and direction of the autonomous robots, input from the sensor is treated 

through neural network-based optimisation. 

2. Related works  

In order to find things via sound, a sound based locale is utilised. But for non-sound generating items, 

this method is not relevant. [11] a multi-sensor location system (MSS) that is a deterministic method of 

interval analysis for mobile robots has been created. The robots are used as sensor technology using 

ultrasonic sensors. [12] utilised GPS-based system suitable to the location of urban robots. For mobile 

robot location estimation, a probabilistic grid method is suggested. The proposed approach is based on 

Bayesian design and is suitable in robots, albeit noisy ultrasonic sensors and occupancy grid maps are 

present, which are approximate representations for the environment. The Markov model (POMM) is 

used to locate the robot partly in interior environments in particular in offices. In line with the 

topological environment structure the state space is structured according to this approach. The grid size 

must, however, be specified for this model. 

[13] Complementary filtering (CF) for the location and orientation estimate of mobile robot by 

combining GPS, digital compass and inertial unit measurement data (IMU). This leads to cheap 

implementing costs and a satisfactory outcome for outdoor robot navigation. [14] introduced an 

intelligent space-based TCP/IP client server system that locates and monitors various robot kinds, 

including wheelchairs for robotics. The system suggested has 11 synchronous photography cameras. 
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Each of these cameras and robot is connected to the server. The server gathers, analyses and transmits 

data from different sensors to the customer. A method of calibration using the multi-camera network is 

proposed for localisation. First, the robot flows across the whole camera field of view on a calibration 

model. Next, robotic odometry and pictures collected are used in the technique of calibration 

suggested. This provides a method for locating and calibrating several cameras concurrently. [15] 

presented a hybrid method to location that incorporates adaptive MCL (AMCL), iterative closest point 

(ICP) and discrete transforming Fourier (DFT). In realtime settings such as industry, our hybrid method 

offers a sub-centimeter precision in place. In order to provide the estimate of the robot position, the 

AMCL algorithm combines laser range measuring with data on odometry. The following is an early 

approximation of the ICP algorithm. The ICP algorithm's output is finally fed into a DFT method that 

gives the end result. [16] developed an enhanced localization method based on the concept of 

multilateration. [17] suggested a method of effective localisation to resolve posture monitoring and 

kidnap recovery concurrently. 

3. Smart system of odometry 

The system of odometry is based on robot wheel combined encoders. Every encoder gives 1024 pulses 

per revolution and every wheel rotation produces one encoder revolution (1:1 coupling). Rolling 

rotation is communicated via a flexible mechanical transmission system from the centre of each wheel 

to the encoder on the side of the solo robot. The encoder output is attached to ad hoc electronics, 

which every 0.5 ms samples the encoder signal. The electronics are built for the measurement and 

integration of the encoder signals and all integration periods of 20 ms are sent to the on-board 

computer. Based on the Euler integration, which gathers encoder increments throughout the inclusion 

time, the integration is carried out in the ad-hoc electronic microcontroller. 

The orientation of a robot's cinematic state (position) in respect to a fixed reference system is 

represented by position (𝑥, 𝑦), in relation to (angle formed between the reference system's X axis and 

the robot's longitudinal location). A circular trajectory is followed while the prototype is rotating. The 

period of integration is sufficiently short to keep trajectory curvature constant. Figure 1 shows the first, 

(𝑥𝑖, 𝑦𝑖) and the last, (𝑥𝑓 , 𝑦𝑓)  post-integration time. The displacements of robot wheels are derived from 

the robots and the size of the wheel. 
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Figure 1: A smart model system odometry. 

The arc length of right (∆𝑑𝑟) and left (∆𝑑𝑙) encoder measurements may be used to calculate robot 

wheels.(∆𝑐𝑟, ∆𝑐𝑙), wheel radius (𝑅𝑟, 𝑅𝑙), and encoder resolution (𝐸𝑛𝑐𝑟, 𝐸𝑛𝑐𝑙). 

∆𝑑𝑟=
2𝜋𝑅𝑟∆𝑐𝑟

𝐸𝑛𝑐𝑟
  

∆𝑑𝑟=
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                                                                                                                                  (1) 

Radius is determined based on wheel distance for each wheel and centre.𝑑𝑤. 
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∆𝑑𝑟𝑑𝑤

∆𝑑𝑟−∆𝑑𝑙
  

𝑟𝑙 =
∆𝑙𝑟𝑑𝑤

∆𝑑𝑟−∆𝑑𝑙
  

𝑟𝑐 =
𝑑𝑤

2

∆𝑑𝑟+∆𝑑𝑙

∆𝑑𝑟−∆𝑑𝑙
                                                                                                                              (2) 

Angle ∆𝜃 and position (∆𝑥, ∆𝑦) is calculated based on these assumptions’ increments are: 

∆𝜃=
∆𝑑𝑟−∆𝑑𝑙

𝑑𝑤
  

∆𝑥= 𝑟𝑐(cos(𝜃) sin(∆𝜃) − 𝑠𝑖𝑛(𝜃)(1 − 𝑐𝑜𝑠(∆𝜃)))  

∆𝑦= 𝑟𝑐(sin(𝜃) sin(∆𝜃) + cos(𝜃)(1 − cos(∆𝜃)))                                                                        (3) 

The location and guidance with the latest calculated increments are updated in the final step: 

𝜃𝑖+1 = ∆𝜃 + 𝜃𝑖  
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𝑥𝑖+1 = ∆𝑥 + 𝑥𝑖  

𝑦𝑖+1 = ∆𝑦 + 𝑦𝑖                                                                                                                               (4) 

Only 3 free parameters, (𝑅𝑟, 𝑅𝑙) and wheel spacer, 𝑑𝑤  the odometry model is controlled by. The 

accurate measurement of these parameters is the sole stage in adjusting the odometric system 

according to this method. 

Another approach to deal with the issue of dynamic odometry consists in preventing the calculation and 

learning of data-based models from autonomous dynamic equations. Such models are very flexible, and 

other variables affecting odometry are taken into consideration that are not addressed in a 

mathematically static model. A learning model has many impacts, including speed, rotation direction, 

changes in the spin rate, slippage of the wheel, etc. 

4. Optimizing the Neural Network 

Neural networks are biological neuron-inspired algorithms. Networks may be used to learn from data 

complicated nonlinear mathematical functions. The collection of artificial neurons receiving an input and 

calculating a product output reflects the function to be learnt. In the training phases, weights are 

calculated in comparison to the required output. Network output. Changes in the function gradient are 

used to adjust weight across different iterations until the failure reaches a minimal or maximum number 

of iterations. Neural networks are a generic interpolator, thus a good generalization may be achieved 

with proper training. The neural network is used to enhance the accuracy of odometry when the errors 

of a mathematically determined odometric model are rectified using a neural network. In order to 

assess a mobile robot mistake, the neural networks are employed. This study trains neural feed 

networks using odometry data and uses GPS information as a fundamental truth. Figure 2 displays the 

network. It requires two input: the incremental number for the left and right encoders for the current 

and prior iteration. The activation function is sigmoid, for GPS-based encoders the training set includes 

7100 data points, whereas the validation set contains 3000 points of the same image but is not utilised 

to train the network. Tests are pertaining to 11,500-point data in the same setting. The GPS data is 

interplayed to obtain the autonomous robot's current GP SPA location, such that encoder data are 

based on the same clock on both odometry and GPS data. The first training is carried out on-line, so that 

all the data are accessible for interpolation. 
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Figure 2: A neural network that feeds information back to itself. 

The angle of the network's outputs changes (∆𝜃), change in length, and change of rpm sensors causes 

the autonomous robot to travel. The trained neural network thus acts like a modelling function, which 

receives input rating and provides output shift and angle. 

The network is trained using a medium squared error method controlled by Levenberg-Marquadt. There 

are two neurons, fifty hidden neurons, and two outputs. Each odometrical input increases and shows 

the angle, and the training dataset is gathered from the worldwide data collection. These facts are 

utilised without more information to train the network. 

The equation (5) is used to compute posture with the use of neural network output (X, Y, θ). The 

inkremental angle and shift are provided by the neural model. All incremental network outputs are 

combined to determine the final posture. 

𝜃𝑖+1 = ∆𝜃 + 𝜃𝑖  

 𝑋𝑖+1 = 𝑋𝑖 + 𝑙𝑒𝑛𝑔𝑡ℎ ∙ 𝑐𝑜𝑠(𝜃𝑖+1) 

𝑌𝑖+1 = 𝑌𝑖 + 𝑙𝑒𝑛𝑔𝑡ℎ ∙ 𝑠𝑖𝑛(𝜃𝑖+1)                                                                                                     (5) 

The previous neural networks are updated with some previous knowledges about the autonomous 

robot trajectory to enhance the accuracy of the posture computation. The new network uses four 

inputs: the odometry of the left and right wheels rises compared to current measures and prior 

measurements. This data allows the network to build up the odometry function using other data, such 

as speed and speed. The accuracy of a neural network model would increase with the provision of 

additional data. A neural network has been assessed using six inputs in the final test. Coders from the 

left and right rollers as well as the diameter of the wheel and sensor wheel from current or prior reading 

are included. For network training, GPS ground data output is utilised. The network includes all the data 

needed to optimise the model. As with previous studies, the number of hidden neurons and outputs is 

the same. 
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These experiments demonstrate that neural network is a strong substitute for mathematical models, 

improves the accuracy and adjusts actual system behaviour when sufficient information is available. The 

neural network may take use of the relationship between inputs and outputs, not included in the 

mathematical model. The model parameters vary throughout time as one of the difficulties of an actual 

odometric system. These modifications may be categorised as rapid or slow. A variation in weight of 

passengers may lead to rapid changes, thus the model changes quickly. Slow changes are caused by 

environmental changes, such as pressure loss of the wheel, temperature fluctuations or tear of the 

wheel. A static mathematical model and a learned model cannot confront this problem, and therefore 

the precision of the model will decrease with time. To address this problem, an ongoing training scheme 

is employed to update the model in real time. The location subsystem is utilised for tuning the neural 

odometric system while the cart is travelling. 

In a historical buffer the navigation data (encoders and wheel radius) are incorporated to train the 

network with the last data to keep the actual system model correctly. The primary issue is obtaining 

adequate tracking data for network training. The prototype location subsystem is based on the fusion of 

several sensors and the location in a prototype map. The accuracy of the autonomous location relies on 

many variables and based on the information of the sensor localization quality may vary. Localization of 

Monte Carlo (MCL) is useful for estimating a mobile robot's position by utilising a map that shows the 

real posture, allowing heterogeneous sensor data to be fused. The adaptive Localization System MCL 

algorithm combines the input of wheel odometry, an inert unit, a global positioning system, and laser 

scanning. A particle weighting model using GPS data is used to improve performance in comparison to a 

particle making method. The results of the technique are the estimated positions and a covariance 

matrix representing location uncertainty. 

Only feasible changes to the model are retrained by the neural network when the accuracy in the 

ground truth is increased (covariance less than 0.5). You may construct a smooth and advanced model 

modification using this technique and can get an accurate, reliable and adaptable model, but your data 

are not correct. All new measurements of covariants smaller than 0.5 are only applied once to the 

neural network, leading to extremely low cost of retraining. 

5. Result and discussion 

Some experiments are performed utilizing our Verdino platform to verify the equations provided. As the 

ground truth a differential GPS is utilised and odometry-synchronized data are acquired via GPS 

placement. This information is generated based on number of satellite availability and position 

optimization outcomes. It provides real-time information regarding position correctness. The data are 

collected with clear sky in excellent weather circumstances to obtain the truth from the ground. The 

data is examined, and this dataset is deleted if any errors are found. The data set utilized in this research 

had an inaccuracy of less than 1.5 cm throughout the journey. 

This prediction has been tested in many studies. Each test consisted of the system moving from a fixed 

starter to a setpoint. There were different proportionate gains in each test. The recorded autonomous 

robot movements are shown in Fig. 3. Point-to-point expertise has been merged to evaluate the efficacy 
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of orientation control on a point-by-line basis. Tracking an extra corner of an independent robot 

supplied the input. In order to separate translation to the limiting point from the rotation to achieve 

alignment, the turning point was selected as the corner utilised to define the point-to-point motion. The 

system positioning precision was shown to remain unaltered experimentally. The precision of the sides 

alignment has been shown to be less than 1.0. The cycle time fell to 9,5 Hz due to an increase in tracking 

load and numeric computations. The system response to a step input for different gain levels is shown in 

Fig. 4. The indicated values are the corners between the X-y levels of the globe. 

 

Figure 3: The point-to-point autonomous robot position. 

 

Figure 4: The orientation of autonomous robot while positioning. 
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6. Conclusion 

One of the primary sensors for position assessment and guidance on robots and self-employed vehicles 

is an intelligent odometry system of an independent robot. But its accuracy tends to be poor over long 

distances. Positions are accurate in brief movements, but mistakes grow rapidly and as travelling 

distance rises, differences to the ground truth emerge. The focus of the article is on the autonomous 

Verdino robot odometric system and the methods used to improve its precision. 

A model-based optimization of the neural network represents autonomous robot movements to 

enhance the odometry quality. The benefit of this model is the knowledge of data input-outcome 

linkages and certain effects that cannot be included in a mathematical model. Tested in three versions, 

this neural network template. The initial part of it is a basic output relation where just one odometry 

data point is taken by the neural network and angled and displaced. The precision of the location is 

enhanced using previous information so that factors such as speed or acceleration may be considered. 

The model's input is the most recent and previous odometric data for this historical data. If not only the 

odometry, but also the real-time range of the wheels, the best results are available when the neural 

network is provided. If the model is kept up to date at this point, the optimization of the neural network 

is constantly trained based on information on localisation. Finally, the neural network-based 

optimisation of the odometric system may be a very powerful system to enhance precision. 
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