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Abstract 

The development of new pathways is the essential technique of robot navigation decision-making and guidance, as well as 

hotspots for study in the domain of artificial intelligence. In this research, an enhanced multi-objective genetic algorithm 

(IMGA) has been suggested to handle 2D stable environment difficulties such as sluggish reaction speed, dangerous factors, a 

lot of turns within the traditional path planning approach, and the simplest planning path. To make sure the efficiency of such a 

planned route, the algorithm employs the heuristic median implantation technique to demonstrate the actual population that 

also enhances the viability of an actual path and creates multiple objective fitness functions depending upon three factors: path 

protection, path energy usage, and path length. Furthermore, by employing a layered approach, as a single-point crossover 

technique, as well as an eight-neighborhood-domain single-point modification technique, the selection, crossovers, and 

modification operators were created. Eventually, the deletion action is included to assure the mobile robot's effective service. 

Simulation studies in a 2D stable environment allow for a modest converging rate and an easier fall into such a regional optimal 

through the simplest route to the destination location.  

Keywords: Crossover operators, Evolution operators, Shortest route, stable environment, Genetic algorithm. 

1. Introduction 

Path planning seems to be a significant study area in the realm of mobile robotics, and this is also the 

major challenge in that study [1]. The goal of the path planning issue is to discover the best and quickest 

path from starting position to the destination position independently without any conflicts in such a 

specific environment containing obstacles [2, 3]. Path modeling is frequently employed in areas like 
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logistical delivery, missile guidance, and smart mobility [4–6]. As a result, how to select a quick and 

efficient approach is becoming a topic of research with both conceptual and applied relevance. 

Due to its excellent universal optimization capability and inherent parallel computational properties, 

genetic algorithm (GA) was widely employed in portable robot path routing issues in current times [7, 8]. 

This GA seeks the best answer by modeling natural growth using mathematical concepts of genetic 

inheritance as well as variability from Darwin's evolutionary biology [9, 10]. However, some significant 

GA results must be published.  A generalized fragmentation crossover operator, for instance, was 

included in GA for enhancing the algorithm's regional optimization capability and implementation 

performance [11].  A revised greedy sunbath evolution operator to address the traveling salesman 

problems (TSP) and included a greedy searching strategy further into GA evolution action must be 

created by Allahverdi and Albayrak [12, 13]. Moreover, an enhanced crossover operator [14] also 

suggested, that avoids early convergence for producing an optimum route in stable situations. 

Depending upon the enhanced genetic algorithm [15], the robot's route planning technique was 

suggested during which the flexibility of such a movable robot route planning approach was increased 

by inserting chromosomes with varied lengths.  To retain population variety, prevent early 

convergence, and preserve concurrency with classic genetic techniques, as well as a parallel elitist 

genetic approach has been presented [16].  

The updated form of basic GA is called multiple objective GA (MOGA). Concerning fitness function 

assignments, MOGA differs, unlike GA. All other steps are the same as GA. A primary goal of multiple 

objectives GA will be to construct the optimum Pareto Front at the objective space that any such 

improvement for any fitness value is possible without interfering with other objective functions [17]. 

The primary goals of multiple objective GAs include coverage, variability, and convergence. Multiple 

objective GAs were broadly classified into two types: decomposition-based multiple objective GAs and 

Pareto-based multiple objective GAs [18]. Such methods are covered in the prior sections.  

Crossover processors combine the genetic data for two or even more parents can produce offspring. K-

point, two-point, single-point, uniformity, sequence, partly matched, priority maintaining crossover, 

cycle, shuffling, and simplified surrogacy is examples of really well crossover processors. A unique 

crossover point being chosen in such a singular point crossover. Genetic data for two parents who have 

progressed outside that point would be exchanged [19]. To create the unique offspring, it swapped the 

tailed array elements of each parent. Eshelman et al. [20] presented shuffling crossover to eliminate the 

bias produced by existing crossover strategies. It scurries the elements of each independent solution 

before the crossover then rearranges it once the crossover process is completed ensuring that the 

crossovers point may not induce bias within the crossover. Unfortunately, the use of such a crossover 

has been fairly restricted in current times. When the parents had identical gene patterns for resolution 

depictions, reducing surrogate crossover (RCX) avoids needless crossovers [21]. This RCX would be based 

upon the premise which GA provides superior persons if such parents' genetic compositions are 

adequately diversified.  Unfortunately, RCX cannot create superior offspring for parents with the same 

genetic make-up. Oliver suggested cycle crossing [22]. It aims to develop offspring from parents, so 

every component holds its place by referencing its parents' positions. It gets some components from its 

first parent during the first round.  
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A genetic activator called mutation preserves genetic variation from one generation to the next. 

Relocation, basic reversal, and scrambled mutation are so well mutation operators. The displaced 

mutation (DM) operator moves a segment of an independent response in itself. The position for 

relocation is picked at arbitrary from the specified substring, so that if the obtained response is 

legitimate and also a randomized relocation mutation. DM variations include interchange mutation and 

inclusion mutation. As in interchange and inclusion mutation processors, a portion of such an 

independent response will be either swapped with some other portion or injected in a different 

position, accordingly [23].   

2. Contribution  

In summary, the following are the important features of this article: 

(i) A heuristic means inclusion method is intended to establish a viable beginning path and 

speed up that algorithm's convergence speed. 

(ii) Multiple objective fitness functions have been suggested that also assign various 

measurement prerequisites as well as weights to every indicator based upon planning 

requisites ensuring that such planned route does have the smallest route length, the best 

security, and softness, and achieves multiple objective enhancement of such method.  

(iii) To preserve inclusivity of the population and prevent early convergence in the final phases 

of the technique, the preference operator is constructed using the layered technique, a 

crossover operator has been developed using the single-point crossover technique, as well 

as mutation operator would be constructed using the eight neighborhood-domain single-

point mutation strategy.  

(iv) To achieve much more effective routes, the deletion operator is included to eliminate the 

unnecessary nodes of such an existing route.  

(v) The technique intricacy is lowered as well as the operating speed is increased on the basis 

that every approach is easy and efficient, and also that the ideal path may be constructed. 

 

3. Related Works 

Several researchers have used grid-based areas to depict given surroundings while responding with 

CFSPP difficulties. To put it another way, the surroundings are separated into squares cells. MAs are 

restricted as they constantly migrate to the middle of their eight surrounding cells (down, up, right, 4 

diagonal directions, and left). These are performed to simplify a lot of research [24], however, it is 

difficult to establish true CFSPP under such a constraint [25], as seen in Figure 2a. As a result, several 

researchers have hypothesized that MAs may travel to an empty cell without being limited to 

neighborhood [26]. Many techniques were used to rectify CFSPP troubles, such as the A-star technique 

[27], the fuzzy concept [28], simulated nitriding [29], artificial potential field (APF) [30], Dubin's equation 

[31], Voronoi schematic, evolution algorithm (EA), transparency graph [32,33], quickly discovering 

arbitrary tree [34], as well as nature, influenced methodologies [35]. The transparency graph was 

initially established in 1979 to prevent conflicts with barriers and has since been revised as an idea using 

the configuration area methodology. Rashid et al. employed a transparency graph during their study, as 
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well as the MAs but also barriers were supposed to be cycloid in structure. Researchers chose the 

corners of every impediment to being nodes. They constructed transparency trees via arraying 

connected nodes till the trees contained the destination node.  

Path planning techniques are broadly classified into four types: classic algorithms, graphical approaches, 

smart bionics methodologies, and other techniques [36]. Both for its resilience, flexibility, and quick 

arbitrary search capabilities, this genetic algorithm (GA) has been extensively employed in portable 

robot route planning studies [37]. The classic genetic approach, on the other hand, never only possesses 

a slower convergence time but is also prone to early convergence [38]. As a result, numerous 

researchers have enhanced the genetic operators to overcome the restrictions of GA. Zhang et al. [39] 

presented a better genetic approach based upon observable area. The principle of transparent 

area, matrix computing, and enhanced mutation operators seem to be the fundamental principles.  That 

approach works in both simple and complex settings. Furthermore, the regularity and protection of a 

path aren't taken into account, and the picking process is quite arbitrary, which may raise the 

algorithm's time complexity. To overcome the robot's path scheduling issue, Lamini et al. [40] presented 

an enhanced similar attribute crossover operator. Given the chromosome's changeable size, the 

operators may construct a viable path with such a higher fitness function and prevent early 

convergence. Unfortunately, the method's beginning population value still has to be enhanced, as well 

as the length of the path doesn't approach the optimum value.   

The viable path might be better in line with real needs by optimizing the fitness value. Chen and Chen 

[41] utilized previous experience to build continuous viable routes and modify the fitness value, 

significantly improving the genetic approach and allowing it to finish development in less time. 

Moreover, the optimum path produced by this technique still contains duplicate nodes, as well as the 

genetic algorithms operator maximization, as well as the algorithm's speed and reliability, must be 

increased. To overcome the path scheduling issue of a tunable robot in such a complicated impediment 

ecosystem, Cheng et al. viewed path planning like a multiple objective optimization issue and analyzed 

the quality of the outcomes premised on four self-defined fitness objective values, however, the 

algorithm's efficacy still wants to be enhanced.  

4. Proposed Algorithmic approach 

The enhanced multiple objective genetic algorithms (IMGA) has been described in this part for planning 

and selecting the ideal operating route of such a robotic system in such a grid stationary context 

4.1. Initialization of the Population:  

The starting population is generally generated by an arbitrary approach in a conventional genetic 

method.  However this approach is quick and simple to use, the fraction of impossible pathways in the 

created pathway is too high, affecting the method's convergence rate as well as operational 

performance. This work presents a heuristic means inclusion approach to generate the beginning 

population to effectively produce a better quality starting population as well as increasing the 

algorithm's overall efficiency.  This strategy's precise procedure is as mentioned earlier: 
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(1) Compute that population M's size. 

(2) Calculate the grid maps size n ∗ n (indicating n rows as well as n columns), a portable robot 

route planning beginning spot S (beginning point S could be stated as 𝑁1), the destination point 

G (destination point G could be represented as 𝑁𝑛∗𝑛), as well as the amount of impediment 

grids f (total number of empty grids equals n ∗ n − f). 

(3) Create a pathway chromosome from the beginning site S to a destination site G, with the 

beginning site S usually being the chromosome's initial gene as well as the destination point G 

usually being the chromosome's final gene. 

(i) Create a grid value 𝑁𝑖  at random (not a part of the barrier grid, beginning point, or 

finishing place). During that stage, the robot's route could be written as𝑆 − 𝑁𝑖 −

𝐺(𝑜𝑟 𝑁1 −𝑁𝑖 −𝑁𝑛∗𝑛). 

(ii) As per formula(2), evaluate whether the nearby nodes as in path is consistent 

∆= 𝑚𝑎𝑥{𝑎𝑏𝑠(𝑥𝑖+1 − 𝑥𝑖), 𝑎𝑏𝑠(𝑦𝑖+1 − 𝑦𝑖)}                                                          (1) 

 

The rectangular dimensions of two neighboring path locations 𝑁𝑖  and 𝑁𝑖+1  are 

represented as in formula by (𝑥𝑖 , 𝑦𝑖) and (𝑥𝑖+1, 𝑦𝑖+1). While∆= 1, the two points 𝑁𝑖  and 

𝑁𝑖+1 are continual; else, they are in discontinuity. And next inclusion location is chosen 

using the median technique to complete the uneven path at that point. Equation 3 

shows the actual computation: 

 

{
 
 

 
 𝑥𝑖

′ = 𝑖𝑛𝑡 [
(𝑥𝑖+𝑥𝑖+1)

2
] ,

𝑦𝑖
′ = 𝑖𝑛𝑡 [

(𝑦𝑖+𝑦𝑖+1)

2
] ,

𝑁𝑖
′ = 𝑥𝑖

′ + n. 𝑦𝑖
′ .

                                                                                          (2) 

 

The dimensions of the nominee grid were 𝑥𝑖
′ and 𝑦𝑖

′ within the formula, n represents the 

total number of columns and rows within a grid, as well as 𝑁𝑖
′ seems to be the number 

of an applicant grid. If 𝑁𝑖
′ would be an empty grid, this is simply placed among 𝑁𝑖  

and𝑁𝑖+1; however, the empty grid in 𝑁𝑖
′ ‘s eight adjacent nodes are arbitrarily chosen as 

the recently implanted node. As seen in Figure 1, a grey region around the N node 

seems to be the eight communities of such a spot. When there is no available grid 

within eight communities of𝑁𝑖
′, it suggests that such action is illegitimate, as well as the 

individual has been immediately disposed of. Reiterate the above implant stages to 

create a consistent viable path. 
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Figure 1: Eight neighborhood nodes. 

 

(iii) Follow the previous steps until you have a starting population with M no repeating 

chromosomes. 

4.2. Fitness Function:  

Just after the basic population is generated, the method must create a fitness value to evaluate every 

individual's productivity and evaluate their advantages and disadvantages. The fitness value is identical 

to the problem's objective value in this case. Under this article, a multiple objective fitness value 

depending on path energy utilization, path length, path security, and path length is created to accelerate 

the convergence of such genetic method whereas maintaining low intricacy, and to identify the effective 

path which can seamlessly avert barriers and quickly achieve the specified point, that is particularly 

described in the following manner: 

 𝐹(𝑁) =
1

𝑎·𝐿(𝑁)+𝑏·𝑆(𝑁)+𝑐·𝐸(𝑁),
                                                                                                         (3) 

Here 𝐿(𝑁) denotes the length of the path, 𝑆(𝑁) denotes the route security, and 𝐸(𝑁) denotes the 

pathway energy usage. The values of the three variables are 𝑎, 𝑏, and𝑐. The length of the path is equal to 

the total of the Euclidean distances among all neighboring nodes, as stated in solution 5. 

 𝐿(𝑁) = ∑ √(𝑥𝑖+1 − 𝑥𝑖)
2 + (𝑦𝑖+1 − 𝑦𝑖)

2𝑛−1
𝑖=1 ,                                                                              (4) 

 Here n denotes the number of nodes on the path. 

4.3. Genetic Operation: 

 

4.3.1. Selection Mechanism:  

The selective operation seems to be the aspect of genetic action that most reflects the "preservation of 

a fittest." For preventing the non-directional mistake generated by the standard roulette selecting 

approach this work uses a layered strategy to construct the selecting operator, like observes: A 

maximum of M members are formed just after the population was initialized, the fitness function of 

every person is determined using the fitness value, as well as the fitness functions are organized in 
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decreasing sequence.  This population can be separated into three groups each of which represents a 

layer, with M/3 persons in every layer. To construct an offspring population, replicate the aliquot mostly 

with greater fitness function in the first layer, make copies with medium fitness function as in the 

second layer, but do not repeat the final fitness with smaller fitness. As well as the population size 

remains M (when M wasn’t divided by 3, and the amount of persons during the final portion 

becomes
𝑀

3
+𝑚𝑜𝑑(𝑀/3)). While repeating its first two levels, mod (𝑀/3) people with higher fitness 

functions must be chosen from its third layer and enter the progeny population, ensuring also that the 

progeny population's number remains M). It guarantees that its best people are passed down to future 

generations thus retaining population diversity. Figure 2 shows the procedure of decision.  

 

Figure 2: Fitness segmentation. 

4.3.2. Crossover Mechanism:  

The crossing process is a more critical genetic action as in method, so it involves chromosome crossing. 

Such that, new child chromosomes were generated by swapping many of all genes of its parent 

chromosomes. A single-point crossover approach is used in our study. Crossover at this place with any of 

these two parent entities must be selected with the same series number (excluding the beginning site S 

as well as the goal site G). 𝑀1: 𝑆 − 2 − 12 − 67 − 69 − 89 − 𝐺; 𝑀2: 𝑠 − 11 − 22 − 67 − 78 − 80 −

𝐺are two examples of parent individuals.  𝑀1
′ = 𝑆 − 2 − 12 − 67 − 78 − 80 − 𝐺; 𝑀2

′ = 𝑆 − 11 − 22 −

67 − 69 − 89 − 𝐺 seem to be the two offspring produced if the identical series number 67 gets chosen 

as the crossing point. There is no crossing operation if this sequential number cannot be present in both 

parent persons.  

4.3.3. Mutation Mechanism:  

To sustain population diversity, the recombination process involves changing either gene on such a 

person's chromosome to form a different chromosome. Conventional multi-point recombination, single-

point mutation as well as other processed approaches, on the other hand, are susceptible to producing 

impossible routes, that will reduce the algorithm's performance. As a result, this research employs the 

eight-point neighboring single-point alteration approach. To displace an existing node, initially pick a 

variance point 𝑁𝑖  (other than the beginning spot S and destination spot G) also in the person of its path 

to only be evolved, and afterward pick the non-obstacle grid called 𝑁𝑖
′ (other than the neighboring 

nodes 𝑁𝑖−1 and 𝑁𝑖+1 within a path to also be evolved) and in eight neighboring of a mutation spot as 

depicted in Figure 1. 𝑁𝑖−1 to 𝑁𝑖
′ and 𝑁𝑖

′ to 𝑁𝑖+1 are then linked in a continuous path using the basic path 

construction approach. This evolution failed when there exists no empty grid within eight neighbors of 
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evolution spots to pick from, or when a suitable continuous path may not be constructed. Such that exit 

the evolution process and reassign a next person to also be altered as well as the alteration point. 

4.3.4. Termination Constraints:  

This terminating constraint is a criterion for determining if or not the genetic technique is capable of 

terminating the process. The ideal fitness function for a specified evolving mathematical threshold of 40 

but rather 50 successive evolving populations is still the same, or the method operates moreover 5 

minutes according to the terminating criterion described in this study. 

4.3.5. Delete Mechanism: 

 

Figure 3: Pathway in deletion mechanism. 

 In this paper, a remove action is also included the scenario of duplicated nodes within the pathway. The 

key principle is that whenever a node could link towards its frontal and back nodes (nonadjacent route 

points) without any barriers, therefore the intermediary nodes among such two places are unnecessary. 

Remove this superfluous node and link these two places straight to meet the objective of lowering path 

length as well as preventing wasteful turns. This method is just for the ideal pathways generated by 

every cycle to prevent the lowering of route nodes that after deletion action, which impacts the viability 

of crossing and mutation actions in genetic processes. The initial best path is 𝑆 − 21 − 34 − 66 − 76 −

𝐺, while the ideal path upon deletion is 𝑆 − 66 − 76 − 𝐺, as illustrated in Figure 3. There will be four 

turns within the initial course, as you can see. The duplicate nodes 21 and 34 within the segment 

between S site to series site 66 are eliminated just after the elimination process, resulting in only two 

turns within the entire path as well as a smaller path length.  

5. Experimental Analysis 
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Java jdk1.8, Windows 10, 16 GB RAM, and Intel Core i7-4790K central processing unit (CPU) (4.0 GHz) 

processors which are components and that are used to execute the suggested IMGA technique and GA. 

To assess performance, five distinct situations were tested. Stable Ecosystems 1 and 2 are tiny situations 

having 16 x 16 grid areas, but Ecosystems 3–5 are larger difficulties having 30 x 30 grid areas. For every 

scenario, GA must be run hundred times. The outcomes of the experiments in Ecosystems 1 and 2 are 

contrasted to those of prior investigations. The MA proceeds from the unit (1, 1) to unit (16, 16) in 

Scenario 1, which has seven impediments. There can be ten barriers in Scenario 2, as well as the robotic 

goes from the unit (1, 16) to cell (16, 1). In both contexts, the GA comes to a halt if the optimal fitness 

function does not change after 500 consecutive generations. 

The suggested technique's fitness function is better in every setting, as well as the mean for all fitness 

functions is superior. In comparison to previous methodologies, the mean fitness function of this 

research is superior to that of the optimum fitness function. The minimum collision-free route 

determined in every setting must be depicted in Figure 4a and Figure 4b. Also, it's worth noting that, 

when contrasted to earlier techniques, the suggested technique finds good pathways quicker in both 

contexts. Figure 5 illustrates how quickly the suggested approach converges. 

 

Figure 4a: Collision-free shortest path in environment 1. 
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Figure 4b: Collision-free shortest path in environment 2. 

 

 

Figure 5: Average fitness over time in both environments. 

The early fitness functions' variations are incredibly large. The variances are gradually reducing as time 

passes. The technique ensures that the fitness function continuously converges to satisfactory solutions. 

It means that, at first, the method attempts a variety of approaches to discover a resolution, and that, at 

the ending of each repetition it regularly converges to specific locations that are regarded to be 

relatively good. It indicates that the method will be on the correct course to diversify and intensify. Also 
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at the terminating stage, we should anticipate the method to produce fairly consistent results for 

every occurrence.  

6. Conclusion 

The path design issue of a robotic system is studied in this research using an enhanced multiple 

objective evolutionary approaches. A path energy usage, path protection, and path length are used as 

appraisal predictors to create a multiple objective fitness value, as well as the methodology utilizes the 

heuristic mean implant technique while the formation of an early population, which efficiently enhance 

the efficiency of an early population and also increases the convergence speed of the technique, It 

reduces path length by guaranteeing that robotic constantly goes towards the goal location, reduces 

path energy usage, also increases the security for scheduled paths to such a significant degree. Lastly, 

the enhanced genetic process has been used to keep the process from entering a regional optimal too 

soon. Simulations demonstrate that the method could operate in a variety of contexts with varying sizes 

and intricacies. Our suggested approach features a reduced path length as well as a better convergence 

rate.  

The goal of this study is to find an economical and reliable way to generate new paths for robotic 

systems in 2D stable surroundings. Moreover, the present condition of the arts in robotic systems 

suggests also that restricted resources used to calculate the optimal shortest route are being expanded 

to construct the route in variable surroundings in a fair amount of period. It may help us focus our 

studies on the next. Whenever the robotic arm is tasked to travel from source to endpoint without any 

predetermined path, we can use the evolving method to find a route. Furthermore, we considered the 

resolution region was 2D, although we may extend the dimensions for feasible paths of robotic systems. 

While stable contexts are used in this research, the low convergence rate indicates that suggested 

techniques and algorithms can be implemented to dynamical contexts where actual route planning 

becomes required. During future studies, the offered principles might be adapted into 3-dimensional 

contexts with greater restrictions for actual scenarios. 
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