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ABSTRACT  

In heavily crowded dynamic situations robot navigation faces numerous problems. The path planning approaches for 

navigation robots in dense situations are presented in this work. In terms of planning and temperament, the route 

planning of independent mobile robots in the navigation architecture is separated into local path planning and global path 

planning. About the scope, preparation, and capacity for the implementation, we have presented in this article a neural 

network model that implements a dynamic version of the route length transformation process (used a stationary domain 

for path planning). With this new version of path generation extremely dynamic environment is possible. The neural 

network operates in discrete time, is locally linked, and hence is extremely fast. The planning procedure does not need any 

early findings of the state of the world. The neural-activity landscape, which creates a dynamically updated topographic 

map across a distribution representing the robot's arrangement space, is used to generate paths. The network dynamics 

ensure local adaptations and give stringent criteria for selecting a robot's future route step. With a 𝐿1standards, planned 

pathways are likely to be optimum, because of these principles. The efficiency of the suggested model is demonstrated by 

simulating the results inside a set of tests for diverse dynamical conditions. 

Keywords: Dynamic Wave Expansion Neural Network, Dynamic Environment, Path planning.  

1. INTRODUCTION 

Security, verification/acknowledgment, monitoring, process automation, and weapons operations 

are now possible for agents [1]. This progress has contributed to the advancement of robots with a 

particular architecture worthy of gathering and analyzing data for a variety of purposes [2, 3], which 

includes autonomous navigation [4]. In case, if these are not understood or clear, then plan globally 
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or locally for robot navigation [5]. In a situation where planning is domestic and the situation is 

unpredictable, that method is termed as "reactive" that occurs [6].  

The main areas of mobile robot autonomous navigation include behavior decisions, manipulation 

control and the perception of information. Path planning is the basis of mobile robot navigation and 

control [7, 8]. The aim of robot route planning is to follow a path that links the present and the 

destination locations. A smooth route must correspond to the features of mobile robots and the 

path must be collision-free [9]. 

Among the most difficult aspects of developing smart robotic systems is giving robots the capacity to 

plan and travel independently. This capability is especially important for robots that work in dynamic 

settings with unexpected and abrupt changes. Even when dynamic data changes by the robot's 

sensing device, the planning process must adjust the path correspondingly. Actual locations that 

feature human contacts, such as museums, stores, or homes, are good examples. In most cases, a 

robot's path must be secure (i.e. explosion-free), optimum or proximate to ideal, and natural, i.e. the 

robot shouldn't get misplaced and wander far from its objective in a complicated setting. When the 

surroundings are dynamic (i.e. barriers in addition to the goal move), there are two possibilities. 

When barrier motions are known ahead of time and dynamics, robots couldn't be taken into account 

(in this case of free-flying items), these issues are simplified to a stationary situation by inserting the 

time dimension to the planned space (driving obstacle to turn out to be stationary in the new space) 

[10]. [11-13] are examples of techniques that care for the limitations on the robot dynamics while 

planning. There are other limited techniques with the most difficult situation, where barrier 

placements or trajectories are not known before. Hurdles are identified locally throughout the 

robotic arm and dynamically integrated into the path creation process in this scenario, which 

increasing applications methods with reorganizing computationally intensive. When the robot hits 

an obstruction in [14], for example, the whole course is reconfigured from the beginning. Graph-

search algorithms developed to use knowledge from past searches to speed up reestablishment [15, 

16]. 

A Dynamic wave expansion neural network (DWENN) is just a new form of a neural network able to 

produce dynamic range possibilities for real-time navigation in a time probably surroundings, as 

described in this study. Everything in the above-mentioned sorts of route optimization problems can 

be solved using this paradigm. The DWENN algorithm's fundamental concept is to arrange wave 

multiplication similarly to how waves on liquid propagate through a fallen stone. The network's 

neurons are organized in a lattice that is consistently discredited. When waves of brain activity are 

generated repeatedly and originate out of the target region a scalar potential field is created. Every 

succeeding wave carries revised distance knowledge from the goal in addition to raises the power of 

lattice nodes, causing neurons further away (from goal) to collect higher activity levels. On a certain 

occasion when a place is not achieved by the actual wavefront, it is said to be untravellable for a 

given robot. 

The following is a breakdown of the paper's structure. The suggested algorithm's main concept is 

described in section 2 along with a codification of the problem. The neural network model is shown 

in Section 3 of the paper. Section 4 describes simulation findings, while section 5 concludes with a 

commentary. 

2. BACKGROUND 
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The route planning may be divided into global and local route planning depending on the frequency 

of environmental information accessible throughout the whole planning stage [17]. The planning of 

paths may take many shapes. The methods of path planning may usually be divided into four 

categories depending on specific methodologies and techniques: template matching, artificial field 

potential, map generation, and artificial intelligence [18]. Each path planning algorithm has a best-

case summary and its own set of restrictions. Mobile robots' present path planning is largely reliant 

on their surroundings. Aside from the constraints of classical path planning; robots are unable to 

finish their learning and judgment in complicated settings, which is a major roadblock for the field's 

growth [19]. As a result, it's critical to design a path planning approach that isn't overly reliant on the 

surroundings and can fit in fast to changing circumstances. 

The Deep Q-Learning Network (DQN) is the main source of functional loss and is a technique of 

environmental modelling and calculation. The approach evaluated for minimising functional losses 

using a gradient descent methodology to finish the route plan is the gradient descent technique. 

Different sampling data are required for education and experience to provide higher generalization 

capability in the neural network, but an overly big data sample can lengthen the training period [21, 

22]. Deep Reinforcement Learning (DRL) has gotten more attention as just a machine learning 

approach, and it's being used more and more in robot route planning [23]. The agent learns by trial 

and mistake as it explores the surroundings. The robot acquires information through exploring an 

area and learning through trial and error. A DRL method offers obvious advantages in route planning 

and calls for less environmental information in the first place [24, 25]. 

Fuzzy control is based on human experiences, and its set of principles is hard to adapt for 

complicated real-world situations. Gharajeh and Jond presented a technique based on a hybrid GPS-

ANFIS system [26]. It comprises GPS-based control for worldwide robot navigation towards the 

target and an ANFIS regulator for localized collision avoidance movement. To adapt to the 

unpredictable environment, ANFIS incorporates a neural network into a fuzzy system. The suggested 

algorithm's viability in discrete settings is tested in this study. The disadvantages of neural networks 

are their extensive training period and slower convergence. As such, Liu et al. developed an 

optimised particle swarm training neural network approach [27]. This approach was nonetheless 

intended to optimise speed and resolution rather than complications. Zhang et al. developed and 

trained a novel deep-set coevolutionary dual-branch neural network (DB-CNN) that enhanced the 

convergence rate, drawing both from global and local information [28]. Zhang et al. designed and 

built a novel deeply coevolutionary double branching neural network (DB-CNN) that improves 

calculation time by extracting the features globally and locally [29]. It is a method to design a 

worldwide route. Sung et al. developed and evaluated the neural network route planner by utilising 

two different offline path planning methods. Offline neural network training needs a very large 

number of data samples which make data gathering difficult and impede self-learning. 

3. SYSTEM MODEL 

The field waves of brain function are dispersed throughout the neuron linked with the target area in 

the DWENN network. Then a recent generation develops at each point in time, containing data 

relating to the distance to the target, i.e. it spreads to a greater activity value for neurons connected 

to distant locations (Figure 1). Addition and certain binary controls are utilised in the parameter-free 
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updating rule and include whole-value calculation. Consequently, the spread of activity is 

computationally efficient and enables real-time planning. 

A neuron at each step "doubles" the action of a neighbour who is: (i.) directly at the target neuron, 

(ii) not at the hurdle, and who has (iii) the active neuron (i.e. the neighbour has a preferred activity 

value) and (iv) the actual neuron (i.e. the current neighbour altered his level of activity in the 

previous iteration). If the bulk of criteria (i)–(iv) for a neighbour is fulfilled, the associated weight 

changes to one, while the other neighbours related change weight (or stay) nil. 

 

 

Figure 1: Wave propagation 

The activity of each neuron forms a scalar potential field with a minimum positive value already in 

the target area (in the potential field the zero states are forbidden).The activity of each neuron 

forms a scalar potential field with a minimum positive value already in the target area (in the 

potential field the zero states are forbidden).The goal attracts the robot worldwide, and it begins to 

move immediately as the first wavefront and reaches its beginning point. It can only migrate to the 

nearby place from where it is inherited from the activity. This makes robot path stages safe, as well 

as the path, is more likely to be the𝐿1- optimal. 

3.1 NETWORK DYNAMICS 

Each neuron i is linked to its set by using the definitions 𝑠𝑖 = {𝑖𝑛, … . , 𝑖𝑛}we presume an 

unpredictable and (potentially) fixed count for the neighbors and the neuron model is shown in 

Figure 2. 

A discrete-time dynamical system can be regarded as the DWENN model. At time 𝑡 + 1, the activity 

of neuron i will be determined by the current activities of its neighbors (the vector 𝑥⃗⃗ =

(𝑥𝑖1
(𝑡), … , 𝑥𝑖𝑛

(𝑡))). It will be influenced by its neighbor' actions as well as its activity at the 

precedent time step𝑥 𝑑 = (𝑥𝑖(𝑡 − 1), 𝑥𝑖1
(𝑡 − 1),… . . , 𝑥𝑖𝑛

(𝑡 − 1)). Therefore, if 𝑥𝑖 > 0, neuron i is 

active; else, it is inert. All neuron's activity levels and connected weights are set to zero at the start. 

Let 𝑖 ∗ (𝑡)be the target neuron's index at time t.  
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Figure 2: Network Architecture. 

There are three types of neurons, each with its own set of dynamics: 

I. For a new target (𝑖 = 𝑖 ∗ (𝑡)) 

𝑥𝑖(𝑡 + 1) = 1.                                                                                                              (1) 

 

II. For the immediate surroundings(𝑖 ∈ 𝑠𝑖 ∗ (𝑡)) 

𝑥𝑖(𝑡 + 1) = {
𝑥𝑖(𝑡) + 1,        if 𝑖∗(𝑡 + 1) = 𝑖∗(𝑡)

2,                 otherwise
                                           (2) 

 

III. For the rest of the neurons 

𝑥𝑖(𝑡 + 1) = ∑ 𝑤𝑖𝑗(𝑡)(𝑥𝑗𝑗∈𝑥 (𝑡) + 2).                                                                          (3) 

The corresponding connection weights are defined by updating the activity level of neuron i 

𝑤𝑖𝑗(𝑡 + 1) =   {
𝛿𝑗𝑘 ,  

if k ∈ 𝑠𝑖 𝑖𝑠 𝑡ℎ𝑒 𝑓𝑖𝑟𝑠𝑡 𝑛𝑒𝑢𝑟𝑜𝑛,

 𝑓𝑜𝑟 𝑤ℎ𝑖𝑐ℎ (𝑎) − (𝑑)𝑏𝑒𝑙𝑜𝑤 ℎ𝑜𝑙𝑑,
0                                              otherwise

                                                    (4) 

A Kronecker symbol is 𝛿𝑗𝑘, and needs of neuron k are as follows:  

(a) where k is not a hindrance., 

(b) 𝑥𝑘(𝑡) > 0, i.e. The component of the action wavefront and contains data about 

transformation in the work environment, 

(c) 𝑥𝑘(𝑡) ≠ 𝑥𝑘(𝑡 − 1) , i.e. It is updated with the latest information, 

(d) if (𝑥𝑖(𝑡) + 𝑥𝑖(𝑡 − 1)) > 0, then 𝑥𝑘(𝑡) < 𝑥𝑖(𝑡) must satisfy, i.e. Its present location is closest to 

the objective than that of the robots. 

It's worth noting that the neighbors of neuron i are taken into account in terms of some 

predetermined ordering. Equation (1) guarantees that its neuron is at the (possibly motion) target 
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does have the lowest action rate within the neural field throughout all times. Weights update rule 

(4) stipulates that every neuron has not more than a single connection weight 𝑤𝑖𝑗∗ = 1, where 𝑗∗is 

chosen according to rules (a)–(d), and 𝑤𝑖𝑗 = 0 for everyone else 𝑗 ∈ 𝑠𝑖. 

Its weight 𝑤𝑖𝑘(𝑡 + 1) is equivalent to one; brain activity flow that is selected is determined by the 

rules (a)–(d). The weight of Wik (t+1), equaling to just one if the neuron k has altered its status in the 

previous step rule (c), if it is active at the time t (rule(b)), is not correlated with a hurdle (rule(a)) and 

if the neuron I has a reduced level of active activity, that is due to the global distribution of potential, 

neuron k is actually nearest to the target neuron (d). 

DWENN's dynamics Equations (1)–(4) may be used to derive the following characteristics right away: 

Property 1: The neurons turn active with the value𝑥𝑖(𝑡𝑎) = (2𝑡𝑎 − 1) if the initial wavefront hits the 

neuron only at time step within a stationary environment. 

Property 2: If neuron i has a positive weight, its weight reflects the orientation of the 

inclined potential field:  𝑤𝑖𝑗 > 0 ⇒ 𝑥𝑖 > 𝑥𝑗; 

Property 3: The doubling number n of network repetitions limits the level of activity of neuron 

i:𝑥𝑖(𝑡) ≤ 𝑛; 

Property 4: That when an active neuron i becomes inactive in the next time step, it will remain 

inactive. Indeed, since𝑥𝑖(𝑡 − 1) > 0 𝑎𝑛𝑑 𝑥𝑖(𝑡) = 0 then 𝑥𝑘(𝑡) < 𝑥𝑖(𝑡)is consistently false, the 

condition (d) in (4) is likewise false, and ∀ 𝑗 ∈  𝑠𝑖 ∶ 𝑤𝑖𝑗 = 0, and, therefore, 𝑥𝑖(𝑡 + 1) = 0. 

In addition, if a target is static: 

Property 5: If an activated neuron stays alive at every time step, its activity is raised by one: 

𝑥𝑖(𝑡) > 0 ⇒ 𝑥𝑖(𝑡 + 𝑐) = 𝑥𝑖(𝑡) + 𝑐;  

Property 6: When neuron i and neuron j both changes active at the same moment, then 

𝑡𝑗 > 𝑡𝑖,then𝑥𝑗(𝑡) > 𝑥𝑖(𝑡) for all 𝑡 ≥ 𝑡𝑗 > 𝑡𝑖 . 

If 𝑤𝑖𝑗 > 0, The next route step of the robot is now in a direction proposed by the single non-zero 

weight of the robot, i.e., the neuron j representing the configuration of the neuron I configuration 

(or when j becomes the target neuron). If there is no other method to continue the action, a step-

back action is also an option. According to Property 2, the robot's route steps are taken in the 

potential field in a gradient descent direction. As a result, the resultant path is usually optimum in 

terms of 𝐿1 metrics. 

The inclinations to produce routes consisting of straight lines are caused by the pre-selected and 

constant count of the neighbor. As a result, it is sensible to question the same neighbors from where 

the activity is the precedent time step was derived first because the likelihood of a fresh wave 

arriving in this direction is higher. 

3.2 IN THE DYNAMIC ENVIRONMENT, OBSTACLE AVOIDANCE, AND GLOBAL ADAPTATION 
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Because activated neurons can momentarily turn inactive to convey dynamic transformation in 

dynamic surroundings, a rapid rearrangement of a potential field is feasible (Property 4). In condition 

(d), this key attribute is encoded (4). Therefore, an inactive neuron may begin to spread an inhibitory 

wave. This is shown in Figure 3a, showing the initial placement of two barriers. 

The neuron beyond the gate (where the black edge is shown) is solely active over the gate, but all its 

close neighbors are more actively active. As a result, whenever these gates are shut, this neuron 

goes dormant (Property 4). This causes an inhibitory wave to also be generated, which inhibits 

neurons beyond the gate one by one until the fresh activity is conveyed by a wavefront crossing 

through the newest gate location. 

The very same inhibitory process allows the robot to dodge dynamic impediments in its path in such 

a natural manner. It is shown in Figure 3 for a dynamic barrier that appears in time 𝑡𝑘, m route steps 

ahead of the robot. Because all of its neighbors (save the barrier neuron) has higher activity, 

condition (d) in (4) is incorrect for them. The neuron i which is between the robot as well as the 

barrier, in particular adjacent to the obstruction, goes inactive at the time𝑡𝑘 + 1. This is comparable 

to the above-mentioned 'gate' scenario. 

According to property 4, the neuron I is sluggish at time, t-k.+2, and one of the neighbors is also 

inactive. Therefore, two inactive neurons occur at least twice immediately after the barrier arises. It 

moves far away from the target along the direction of wave head growth. If the robot's position 

corresponds with any of these inactive neurons following 𝑚/2steps, the robot halts and pauses at 

least another time step before continuing navigation at the time 𝑡𝑘 +
𝑚

2
+ 2 if a fresh wavefront has 

arrived at its location (Figure 3b). The next stage on the robot track is the number of neurons in the 

vicinity. Figure 3c illustrates the final route of the robot according to the number of neighbors in 

Figure 3a. 

This inhibitory process distinguishes our model from others like the traditional resistive grid, which 

requires many samples to overcome local maxima and develops into a solution. Throughout these 

cycles, oscillatory movements of the robots that are locally directed, are recorded, resulting in 

artificial, far from optimal 'Hither and Thither' pathways. 

 

 

Figure 3a: Obstacle avoidance at 𝑡 = 𝑡𝑘. 
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Figure 3b: Obstacle avoidance at 𝑡 = 𝑡𝑘 +
𝑚

2
. 

 

Figure 3c: Obstacle avoidance at 𝑡 > 𝑡𝑘 +
𝑚

2
+ 1. 

4. EXPERIMENTAL ANALYSIS 

We show simulation findings for several sorts of dynamical environmental changes in this section. All 

of the tests were conducted for a point robot inside a 2D workspace to show the dynamic nature of 

the proposed method more clearly, although this does not limit the model's broad application. 

Graphs depict stationary obstacles in the workplace are given in a µ - plots light grey tone, whereas 

dynamical obstacles are colored black. Continuous curves are used to illustrate the robot's paths. 

Black squares that come out of nowhere in the workspace represent obstacles that arise at random. 

The letters SP and TP stand for start and target positions, respectively. 

Above the discretized workspace model, we employed a network field of 3721(61×61) neurons for 

our studies. The workspace's boundaries are regarded as impediments. We picked the labeled 

adjacent neurons for a deadline extension. As a result, the robot prefers to travel horizontally first 

wherever possible. The workplace is crowded with static impediments in an open gate condition. 

The dynamic obstacle begins to travel in the direction of the goal once the robot has taken 50 route 

steps. It comes to a halt at the spot, leaving a tiny gate open. At each time step, the robot must 

navigate through the gate while avoiding 20 random barriers that emerge in the workspace. 

The starting configuration for this test case in a closed gate condition is quite identical to the “open 

gate” scenario. The robot goes over the same stages as the human. The moving impediment, on the 
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other hand, shuts the gate before the robot can travel through. The robot subsequently responds to 

the changes in the surroundings in a dynamic manner. The ultimate path and the activity landscape 

at the time of achieving the goal are represented. 

“Freezing up” is a term used to describe a situation in which Obstacles that changes throughout 

time: When the robot takes its initial first step throughout this model, the dynamic obstacles 

begin to travel in the direction of the arrows. Once the obstacles are frozen the robot has already 

taken 20 path steps, as illustrated in Figure 4. After then, this activity landscape swiftly adjusts to the 

state of the environment. This resultant activity landscape depicts the reflect organization of the 

stationary workspace at the time of arriving at the objective.  

 

Figure 4: Freezing up a dynamic obstacle. 

“Warming up” is a term used to describe the process of preparing for Obstacles that change 

throughout time: In this scenario, the robot's starting and target position are the same as in the 

previous one. The workspace barriers appear in the places illustrated in Figure 5. The robot begins to 

move, and after five route steps, the obstacles begin to drift in the directions indicated by the 

arrows. Here the robot dynamically and successfully approaches the target in a difficult 

circumstance. 
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Figure 5: Warming up a dynamic obstacle. 

With this model, we did a series of tests with randomly occurring obstacles in sizes 20, 150, and 250. 

In a 𝐿1 metric, these models examples clearly show the path's potential to be optimum. With 

these amounts of barriers, the path length steadily rises. The aim in this example is to attain a goal in 

a setting with fixed obstacles. The robot is said to identify an impediment only when it is directly in 

front of it. Obstacle positions are considered free throughout the paths design procedure. The 

described method, which starts from scratch every time, has a new obstacle that could be identified 

by the robot. This suggested solution dynamically incorporates found impediments into the path 

creation process. Further, allow the robot to travel in real-time rather than having to wait for the 

entire course to be preplanned. The Robot detects the resulting paths and the hurdles in the 

traversal. 

5. CONCLUSION 

We've proposed a new model of neural network that can calculate a dynamic distance transform 

(dynamic grid potentials), which might be beneficial for route planning in an altering environment. 

With a wave expansion process and a set of principles for detecting the next suitable route 

step, robots are combined effectively in the suggested neural network dynamics. The brain activity 

landscape evolves and compensates for environmental modification due to local connections 

within neurons and regular stimulation also at the target neuron. This ensures that the potentials of 

the grid are properly formed. The target point is consistently at the potential field's lowest value, 

attracting the robot to a goal. The production of a grid potential is a quick operation where the 

network is extremely parallel and locally linked (every neuron in this networked field updates its 

states every time). 

These proposed neural network dynamics has been evaluated in the circumstances of autonomous 

navigation and investigation are conducted on a variety of complicated dynamic environmental 

changes, such as obstacle emergence, vanish, and drift, rejection of random hurdles, and utilizing 
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the workspace. It has demonstrated both the ability to adjust quickly to dynamic changes and, in the 

exclusion of the latter, the ability to quickly stabilize the activity. In such a𝐿1metric, the planned 

pathways are safe and have a propensity to be optimum. Due to the rapid dynamical update of the 

potential field, the robot explores actively rather than waiting for “great opportunities” in the 

environment. As a result, the suggested method may be thought of as a balance between a proclivity 

for path ideally and an active and mobile response to environmental alterations. The method 

provided here might be used to design paths for mobile autonomous systems as well as robotic 

manipulators. 
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