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Abstract:  

The focus of this article would be to use various numerical techniques and discover the numerical performance of 

singular two-point boundary value problems. This is certainly done in a comparative manner, mostly by using the 

application of finite element methods. The calculated solutions have been discussed extensively in order to fully 

understand the conduct of the physical processes represented by the replica equation. We propose a method for 

resolving a class of linear and non - linear singular two-point boundary value problems that is both effective and 

efficient. The outcome reveal that the method is exceedingly successful straightforward, and simple. 
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Introduction 

Singular two-point boundary value problems are encountered in many physical models such as 

electro hydrodynamics and some thermal explosions, and thus, have been investigated by using a variety 

of numerical methods [1-5]. 

 

In most cases, it is not possible to solve the singular boundary value problems analytically. 

However, there are some numerical/approximate methods used in the literature, for instance, finite 

difference methods [6- 10]. 

 

A novel approach that combines a modified decomposition method with the cubic B-spine 

collocation technique is presented in finite element methods [11-15] to obtain approximate solution with 

high accuracy. In order to avoid solving such nonlinear algebraic or transcendental equations for two-

point boundary value problems, in [16], extended ADM was introduced for nonsingular problems with 

boundary conditions. 

 

Herein, an important instance also is the use of an automatic plotter that frequently requires 

interpolation at great many intermediate points. However, it is well known since then that the cubic spline 
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method of Bickley gives only second order convergent approximations. But cubic spline itself is a fourth 

order process depicted below. Errors are shown in Table-1. 

Mathematical Details of the Discretization 

A−α(Aα, I′)′ = 𝑓(A, I)                      0 < A ≤ 1,     (5.1) 

I(0) = A,   I(1) = B, 

(A, I) ∈ {[0,1 × 𝑅]}; (A)𝑓(A, I)
𝜕𝑓

𝜕I
, 

𝜕𝑓

𝜕I
≥ 0  

0 = A0 < A1 < A2 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ +< AN = 1. 

Ij = I(Aj) and fj = 𝑓(Aj, Ij) 

A−α d

dA
(Aα dI

dA
) =

Cj−1

hj
(Ij − I) +

Cj

hj
(I − Ij−1), Aj−1 < 𝐴 < Aj   (5.2) 

hj = Aj − Aj−1 𝜎j =
hj+1

hj
 

[A−α(Aα, I′)′]A = Aj = Cj= fj 

[A−α(Aα, I′)′]A = Aj−1 = Cj−1= fj−1 

I(Aj−1) = Ij−1,   I(Aj) = Ij, 

I(A) = −
Bj

𝑎
[(IjAj−1

a − Ij−1Aj
a) − Aa(Ij − Ij−1)] + [Bj

∗A2{2A(1 + 𝛼) − 3(2 + 𝛼)Aj−1} +
aj

𝑎
Aa + aj

∗] Cj +

[Bj
∗A2{3(2 + 𝛼)Aj − 2A(1 + 𝛼)} +

bj

𝑎
Aa + bj

∗] Cj−1   (5.3) 

Aj−1 < 𝐴 < Aj 

Bj =
a

Aj
a−Aj−1

a ,    Bj
∗ =

1

6hj(1+𝛼)(2+𝛼)
   

aj = −BjBj
∗[𝛼Aj

2(2Aj − 3Aj−1) + 2Aj
2(Aj − 3Aj−1) + Aj−1

3 + (𝛼 + 4)] 

bj = −BjBj
∗[Aj−1

3 (𝛼 + 4) − 𝛼Aj−1
2 (3Aj − 2Aj−1) − 2Aj−1

2 (3Aj − Aj−1)] 

aj
∗ =

BjBj
∗

𝑎
[Aj

2Aj−1
a {2(1 + 𝛼)Aj − 3(2 + 𝛼)Aj−1} + (𝛼 + 4)Aj−1

3 Aj
a] 

bj
∗ =

BjBj
∗

𝑎
[(𝛼 + 4)Aj

3Aj−1
a − Aj

aAj−1
2 {3(2 + 𝛼)Aj − 2(1 + 𝛼)Aj−1}] 

−BjIj−1 + (Bj + Bj+1)Ij − Bj+1Ij−1 = AjCj+1 + BjCj + CjCj−1 

  𝑗 = 1,2,3, … … . , 𝑁 − 1       (5.4) 
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Aj = −6Bj+1
∗ Aj

2+𝛼 + aj+1 

     Cj = −6Bj
∗Aj

2+𝛼 − bj 

Bj = 6Aj
1+𝛼[(2 + 𝛼)(Aj+1Bj+1

∗ + Aj−1Bj
∗) − (1 + 𝛼)Aj(Bj+1

∗ + Bj
∗)] + (bj+1 − aj) 

Cj−1 = fj−1 

−BjIj−1 + (Bj + Bj+1)Ij − Bj+1Ij−1 = Ajfj+1 + Bjfj + Cjfj−1 

  𝑗 = 1,2,3, … … . , 𝑁 − 1       (5.5) 

t(hj) =
1

24
Aj

𝛼(1 + σj
3)hj

3fj
"+⋯ ⋯ 

BI + Cf + T = R          (5.6) 

I = (i1,i2,i3, ⋯ ⋯ ⋯ iN−1)
T

,  T = (t1,t2,t3, ⋯ ⋯ ⋯ tN−1)
T

 

𝑓 = (f1,f2,f3, ⋯ ⋯ ⋯ fN−1)
T

,R = ((B1X + Z1f0)O ⋯ ⋯ O(BNY + XNfN))
T

 

 

−𝐵3𝐵3 + 𝐵4 − 𝐵4 

Bj > 0, Xj < 0, Yj < 0, Cj < 0, C > 0 

BI̅ + Cf(I)̅ = R        (5.7) 

(B + CF)E = T        (5.8) 

E =  I̅ −I and EF = f(I)̅ − f(I)  

[
𝜕f1

𝜕I1

𝜕f2

𝜕I2
⋯ ⋯ ⋯

𝜕fN−1

𝜕IN−1
] 

𝜕𝑓

𝜕𝐼
≥ 0,    F ≥ 0  CF ≥ 0 

B + CF ≥ B  

(B + CF)−1 ≤ B−1         (5.9) 

‖E‖ = ‖(B + CF)−1T‖ ≦ ‖B−1‖‖T‖                  (5.10) 

B−1 = (Bi,j
∗ ),    𝑎 = 1 − 𝛼.   j = 1,2,3 ⋯ ⋯ , i − 1 

Bi,j
∗ = (

Ai

A1
)

∗

B1,j
∗ −

1

𝑎
(Ai

a − Aj
a), i = 1(1)N − 1, i ≥ j 
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B1,j
∗ = −

1

aD
[(AN

a − AN−1
a )(AN−2

a − Aj
a) − (AN

a − AN−2
a )(AN−1

a − Aj
a)]  (5.11) 

D = (
AN−1

A1
)

∗

(AN
a − AN−2

a ) − (
AN−2

A1
)

∗

(AN
a − AN−1

a ) 

j = i, i + 1, … … . , N − 1  

B1,j
∗ = (

Ai

A1
)

∗
 Bi,j

∗ , i ≦ j 

B1,j
∗ =

1

aD1
[(AN

a − Aj
a)(Aj

a − Aj−1
a )]       (5.12) 

∑ B1,j
∗

i−1

j=1

= −
1

𝑎
(

A1

AN
)

𝑎

[(A1
a + A2

a + ⋯ ⋯ ⋯ + Ai−1
a ) − (i − 1)AN

a ] 

∑ B1,j
∗

N−1

j=1

=
1

𝑎
(

A1

AN
)

𝑎

∑(AN
a − Aj

a)

N−1

j=1

 

∑ Bi,j
∗i−1

j=1 =
1

𝑎
[(N − i)Ai

a + ∑ Aj
ai−1

j=1 − (
Ai

AN
)

𝑎
∑ Aj

aN−1
j=1 ]    (5.13) 

Aj = (jh)
1

1−𝛼⁄  

∑ Bi,j
∗i−1

j=1 =
1

𝑎
[(N − i + 1)Ai

a + ∑ Aj
ai−1

j=1 − (
Ai

AN
)

𝑎
∑ Aj

aN
j=1 ]    (5.14) 

1𝜆+2𝜆+⋯ ⋯ ⋯ ⋯ (i − 1)λ <
𝑖𝜆+1

𝜆+1
       (5.15) 

1𝜆+2𝜆+⋯ ⋯ ⋯ ⋯ Nλ <
Nλ+1

𝜆+1
        (5.16) 

𝜆 =
𝑎

1−∝
 

∑ Bi,j
∗i−1

j=1 <
1

𝑎
[(N − i + 1)Ai

a +
𝑖𝜆+1hλ

𝜆+1
− (

Ai

AN
)

𝑎 hλNλ+1

𝜆+1
]    (5.17) 

<
tλ+1

a(λ+1)h
         (5.18) 

t = [
(λN+λ+1)a

λN(a+1−∝)
]

1
(1−∝)⁄

       

‖E‖ <
tλ+1

a(λ + 1)h
‖tj‖ 

≤
tλ+1

a(λ + 1)h

Aj
∝h3

12
|f ′′| 
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≤ (
a

λ+1
)

λ+1 h2C

a(λ+1)
       (5.19) 

Observations and Conclusion 

Table 1 Absolute error   ǁEǁ in problem 1 

 

N ǁEǁ 

 ɑ=0.5   σ=0.98  ρ=1/2 

20 2.7 (-4) 

40 8.3 (-5) 

80 2.7 (-5) 

100 2.7 (-6) 

 

N ǁEǁ 

 ɑ=0.5   σ=1.02  ρ=1/2 

20 1.8 (-4) 

40 4.2 (-5) 

80 1.2 (-5) 

100 2.4 (-6) 

 

 

We can be used to solve a class of linear as well as nonlinear singular two-point boundary value problems. 

Note that for higher dimensional problems, the same discussion could be an important milestone in 

numerical modeling. 
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