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Abstract 

Classification of chemical compounds present in the essential oils is considered vital to check the genuineness of the 

chemical oils, its smell and odour. Hence, it is essential in utilising gas chromatography to find the retention indices using 

the structure of the chemical compounds present in the chemical oil in gaseous state. The utilisation of deep learning 

model cloud help in determining the retention index of the gases compounds to test the genuineness. In this paper, a 

model is developed using convolutional neural network (CNN) to detect the presence of molecules while processing the 

essential oils. In Gas chromatography, the CNN involves in predicting the retention index of the GC on polar and mid-polar 

phases. The mean square error is measured over the stationary phases on the test datasets to validate the prediction 

accuracy of the model. The comparison with experimental observation shows that the proposed state-of-art model 

achieves near optimal training and testing accuracy than other methods.   
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1. Introduction  

Essential oils are defined as the mostly volatile and odorous fraction of vegetable materials that has 

been isolated by some physical method. In the alchemical lexicon, the term 'essential oil' refers to 

the essence or whole flavour and aroma of a plant species, as coined by Paracelsus and other 

alchemists. Essential oils in plants have a distinct and sometimes diagnostic odour that helps identify 

the plant. Each essential oil is made up of organic chemicals whose type and relative amounts 

depend on a variety of agricultural circumstances, including the surrounding climate and soil 

conditions, as well as when the plant was harvested and how it was handled afterward [1]. 

The number of essential oils discovered and identified from various plant species has risen to over 

3000, with hundreds of them being commercially manufactured. The price of any commercial 

essential oil is determined by the percentage of oil yield from the plant species, the rate of 

production, and, most importantly, the intended use of the oil in the product [2] [3]. 
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Many plant parts, such as fruit, leaves, roots, bark, and heartwood, are used to make essential oils. 

Other plant parts that are used to make essential oils are balsam and gum [4] [5]. Essential oils are 

made by processing plant materials to remove glycerides, cellulose, sugars, starches, salts, tannins, 

and other minerals, resulting in oils that are mainly free of these substances. From 0.05–18%, the 

production of essential oils from plants varies greatly [6]. 

The essential oil is found in the oil sacs of various plant parts and is extracted using a combination of 

comminution, heat, water, and solvents to create the final product. The three fundamental 

procedures used for essential oil isolation are distillation, selective solvent extraction, and 

mechanical expression, with enhancements or alterations introduced for each when accessible. 

Resinoids, concretes, absolutes, distillates, and other derivatives are all considered essential oils [7]. 

The gas chromatographic retention index (RI) measures how well a given stationary phase (SP) 

retains a specific molecule without being heavily dependent on the chromatographic conditions in 

use. RI can be used in a variety of gas chromatographic settings and instrument configurations [8]. 

A crucial part of SP forecasting is the ability to accurately anticipate RI for the poles and mid-poles. 

For polar SP, reference experimental RI is only accessible for a small subset of the total number of 

substances. Large adequate RI databases are not available for the mid-polar SP region. For volatile 

GC-MS analysis, RI prediction for mid-polar SP can be used, as these SP are commonly used in 

analytical practise and have a wide range of applications [9]. 

It is possible to pick SP for given analytes and plan an experiment based on RI predictions for a 

variety of SP. Deep learning approaches can be employed for both polar SP and non-polar SP. Such 

approaches can attain a decent level of accuracy with only a few thousand compounds. Small data 

sets hinder prediction for mid-polar SP, and new techniques are likely required. 

Human-engineered features are generally referred to as deep learning when used in machine 

learning models that use deep neural networks with complicated architectures to derive information 

directly from raw features. Among all scientific disciplines, deep learning is one of the most quickly 

evolving approaches [10]. Deep learning algorithms consistently outperform more traditional 

approaches in all of these scenarios. 

To detect the presence of compounds in essential oils during processing, a model is created utilising 

a convolutional neural network (CNN). By estimating the retention index of GC on polar and mid-

polar phases, the CNN aids in Gas Chromatography (GC). To verify the model accuracy in making 

predictions, the mean square error is calculated over the dataset’s stationary phases. 
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2. Background 

The RI prediction, also known as retention relationships of molecular structure, has been the subject 

of numerous earlier studies. The majority of these studies take into account only a few dozen 

chemically homogeneous chemicals from limited data sets. For relatively tiny test sets, good 

accuracy is often obtained in these situations [11]-[14]. 

Such models, on the other hand, are not very adaptable, and their applicability boundaries are often 

a mystery. References [14] - [16] evaluate earlier QSRR efforts that focused on small data sets. 

Developing flexible RI prediction models that may be used on virtually any structure is a critical goal 

to be completed soon. Multiple publications [17–19] on RI prediction for various compounds use 

data sets ranging from hundreds to tens of thousands of chemicals.All but a few of these pieces have 

already been thoroughly examined in our prior work [17]. 

When large enough training sets are available, deep learning models generally outperform models 

based on hard-coded characteristics. At least four studies [17] through [19] - [21] have used huge 

data sets and deep learning algorithms for RI prediction in recent years. The prediction of GC 

retention time by various steroids is done using deep learning in another study [22]. 

3. Proposed Method 

With the same training data as the authors of the original article, we trained our second-level model 

to predict RI (in ms). Using a large enough data set, it was possible to create models for second-

dimension retention times and indices. 

DB-1701 was studied with a set of 36 chemicals, while DB-210 was studied with 130 compounds. 

There are multiple series of homologues in the later data set, so it is not small either. There are 

compounds in it from several classes, but it is not extremely diversified. These sets of data can be 

utilised to train the model, but the model applicability and generalizability cannot be determined 

based on them. When dealing with tiny data sets, it is impossible to know whether a complicated 

model would not "overfit" for specific classes of molecules in the data set or whether it will have 

adequate accuracy in general. 



Nat. Volatiles & Essent. Oils, 2021; 8(4): 3607-3617 
 

3610 
 

 

Figure 1: Proposed Methodology 

3.1. CNN Prediction 

A CNN is a feedforward neural network of this type. Pattern recognition and image processing both 

benefit from the usage of CNN, a fast and accurate recognition technique. It has a lot of advantages, 

such as a straightforward structure, fewer training requirements, and adaptability. As a result, voice 

analysis and image recognition have both seen a spike in interest in the technology. Biological neural 

networks are more like it because of its weight-shared network structure. It reduces the number of 

weights and the complexity of the network model. 

CNN has two levels of structure. A feature extraction layer connects each neuron input to the 

previous layer local receptive fields and extracts the local feature from those fields. Once the local 

features have been extracted, the relationship between their positions in reference to other 

characteristics can be calculated. Feature map layers are another network component; each 

computing layer is made up of a number of feature maps. Feature maps are made up of planes, with 

each plane neurons having equal weight. It is because of this that the feature map has shift 

invariance because its structure uses the sigmoid function as the activation function for the 

convolution network. Furthermore, the number of network parameters is minimised because 

neurons in the same mapping plane share weight. There are two distinct extraction structures in the 
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convolution neural network: one that calculates the local average and a second that extracts 

additional features. This additional layer reduces the resolution by one for each convolution layer in 

the neural network. 

For the majority of its applications, CNN is used to detect distortion in two-dimensional visuals. If we 

utilise CNN, we can avoid explicitly extracting features because the feature detection layer of CNN 

learns from training data instead of doing so explicitly. In addition, the weights of the neurons in the 

same feature map plane are the same, allowing the network to conduct many studies at once. As 

compared to a neural network, the convolution network has a significant advantage in this area. 

Because of the unique structure of the CNN local shared weights, voice recognition and image 

processing benefit greatly from CNN technology. Its design is more in line with the structure of the 

human brain genuine neural network. By using shared weights, the network becomes simpler. 

Feature extraction and classification are simplified since multi-dimensional input vector images can 

enter the network immediately, avoiding the need for data reconstruction. 

Convolution Process: The deconvolution of the input picture is performed using a trainable filter Fx, 

followed by the addition of a bias bx, to produce a convolution layer Cx. 

Sampling Process: In this process, n pixels from each neighbourhood become a pixel, which is then 

scalar-weighted with Wx + 1 weighted, bias-added with bx + 1, and activated to produce a narrow Sx 

+ 1 times feature map of n times pixels in each neighbourhood. 

Local receptivity, weight sharing, and subsampling by time or space are all significant features of 

CNN technology. These techniques help to extract features while reducing the number of training 

parameters required. To eliminate explicit feature extraction and implicitly learn from the training 

data, CNN uses the same neuron weights on the feature mapping surface, which allows it to learn in 

parallel and so lower the network overall complexity. It is possible to acquire some robustness, scale, 

and deformation displacement by using a sub sampling structure based on time or space. With the 

right input information and network design, speech recognition and image processing can benefit 

from distinct benefits 

4. Results and Discussions 

The study used 50% trifluoropropylmethyl 50% dimethyl polysiloxane (DB-210) and 14% 

cyanopropylphenyl 86% dimethyl polysiloxane (DB-1701) as its chemical compounds to be detected 

in large enough data sets. 
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Figure 2: Training Loss 

 

Figure 3: Testing Loss 
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Figure 4: Train Accuracy 

 

Figure 5: Testing Accuracy 

Figure 2-4 shows a schematic representation of the machine learning and deep learning models that 

were used in this study. Data from non-polar standard/semi-standard SP is used to train CNN. There 

are a lot of similarities between the structure and hyperparameters of these neural networks and 

those employed in this research. The fundamental concept is to employ non-polar and polar SP RI 

values as input features for mid-polar SP RI prediction. 
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Figure 5: Sensitivity 

 

Figure 6: Specificity 
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Figure 7: F-measure 

Figure 5 shows the results of sensitivity, where the proposed method achieves higher rate of 

sensitivity than other method. Figure 6 shows the results of specificity, where the proposed method 

achieves higher rate of specificity. Figure 7 shows the results of F-measure, where the CNN achieves 

higher rate of F-measure than other methods  

5. Conclusions 

In this paper, CNN detects the RI of GC while processing the essential oils. In GC, the CNN involves in 

predicting the retention index of the GC on polar and mid-polar phases. The mean square error is 

measured over the stationary phases on the test datasets to validate the prediction accuracy of the 

model. The simulation result shows that the accuracy of the proposed CNN model is higher when 

compared with other methods via structure-retention relationship in linear quantitative manner.   
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