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Abstract

The rotary inverted pendulum system is an inherently unstable system with highly nonlinear dynamics. It is used for design,
testing, evaluating and comparing of differenassical and contemporary control techniques. The goal of this project is to
design an ADP based LQR controller for the rotary inverted pendulum system. Herelraselélpolicy iteration algorithm

is used to design the ADP based LQR controller. The-syigagd balance control is also implemented for the rotary inverted
pendulum system using ADP based LQR controller gain. The response of the rotary inverted pendulum system with
conventional LQR controller, ADP based LQR controller, sipiagd balance contt is illustrated using MATLASIMULINK
platform. The result obtained after comparing the ADP based LQR controller response with conventional LQR controller, the
rotary inverted pendulum system is stabilized faster with ADP based LQR controller andrigeiswind balance control
response of the rotary inverted pendulum system has also improved due to ADP based LQR controller gain.
Keywords—ADP, LQR controller, Swing up and balance control.

l. INTRODUCTION

The inverted pendulum is an inherentipstable system with highly nonlinear dynamics. This is a
system which belongs to the class of unadetuated mechanical systems having fewer control inputs
than the degree of freedom. This renders the control task more challenging, making the inverted
pendulum system a classical benchmark for the design, testing, evaluating and comparing of different
classical and contemporary control techniques. Being an inherently unstable system, the inverted
pendulum is among the most difficult systems, and is ondaefrhost important classical problems.

The numerous practical applications of the rotary inverted pendulum system make its study
pertinent. In robotics, balancing systems are developed using inverted pendulums. These find
application in transport machingkat need to balance objects, in systems that support walking for
patients, in robots that are used in domestic and industrial use and in object transport using drones.
Therefore, controlling this system is essential and throughout the years many classited|
solutions are proposed. However, for more efficient control this project proposes an ADP based LQR
controller for controlling the rotary inverted pendulum system.

H. Wang, H. Dong, L. He, Y. Shi and Y. Zhang, "Design and Simulation of LQ& @Gdhttble
Linear Inverted Pendulum,"” International Conference on Electrical and Control Engineering, vol. 2, pp.
699702, 2010- This paper focused on modelling and performance analysis of linear inverted
pendulum and design and simulation of LQR cdtdro Main to introduce how to build the
mathematic model and the analysis of its system performance, then design a LQR controller in order
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to get the much better control. Simulation is done to show the efficiency and feasibility of proposed
approach [1].

F. A. Yaghmaie and S. Gunnarsson, "A New Result on Robust Adaptive Dynamic Programming for
Uncertain Partially Linear Systems," IEEE 58th Conference on Decision and Control (CDC), vol. 71, pp.
74807485, 2019 This paper, presents a new result on robusagtive dynamic programming for the
Linear Quadratic Regulation (LQR) problem, where the linear system is subject to unmatched
uncertainty. They assume that the states of the linear system are fully measurable and the matched
uncertainty models unmeasurablstates with an unspecified dimension. They used the spadati
theorem to give a sufficient condition such that the generated policies in each iterationpdlany
and offpolicy routines guarantee robust stability of the overall uncertain system. slifiécient
condition can be used to design the weighting matrices in the LQR problem and simulation example
are given to demonstrate the result [2].

Y. Liu, Y. Luo and H. Zhang, "Adaptive dynamic programming for digereteQR optimal tracking
control problems with unknown dynamics," IEEE Symposium on Adaptive Dynamic Programming and
Reinforcement Learning (ADPRL), vol. 9, p.2014— In this paper, an optimal tracking control
approach based on adaptive dynamic programming (ADP) algorithm is pobpmselve the linear
guadratic regulation (LQR) problems for unknown disctate systems in an online fashion. First, we
convert the optimal tracking problem into designing infiriterizon optimal regulator for the tracking
error dynamics based on theystem transformation. Then we expand the error state equation by the
history data of control and state. The iterative ADP algorithm of Pl and VI are introduced to solve the
value function of the controlled system. It is shown that the proposed ADP &lgosolves the LQR
without requiring any knowledge of the system dynamics. The simulation results show the
convergence and effectiveness of the proposed control scheme [3].

S. A. A. Rizviand Z. Lin, "Reinforcement LeaBdasgd Linear Quadratic Regudatof Continuous
Time Systems Using Dynamic Output Feedback," in IEEE Transactions on Cybernetics, vol. 50, pp. 4670
4679, 2020 In this paper, we propose a modiee solution to the linear quadratic regulation (LQR)
problem of continuougime systems bsed on reinforcement learning using dynamic output
feedback. The design objective is to learn the optimal control parameters by using only the measurable
input-output data, without requiring model information. A state parametrization scheme is presented
which reconstructs the system state based on the filtered input and output signals. Based on this
parametrization, two new output feedback adaptive dynamic programming Bellman equations are
derived for the LQR problem based on Pl and VI. Unlike the exaiipgt feedback methods for
continuoustime systems, the need to apply discrete approximation is obviated. In contrast with the
static output feedback controllers, the proposed method can also handle systems that are state
feedback stabilizable but not gte output feedback stabilizable. An advantage of this scheme is that
it stands immune to the exploration bias issue. Moreover, it does not require a discounted cost
function and, thus, ensures the closkabp stability and the optimality of the solutio@ompared with
earlier output feedback results, the proposed VI method does not require an initially stabilizing policy.
We show that the estimates of the control parameters converge to those obtained by solving the LQR
algebraic riccati equation. A compretsive simulation study is carried out to verify the proposed
algorithms [4].
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. SYSTEMDESCRIPTION
A. QUANSER QUBE-SERVO 2

The QUANSER QUSBE&rvo 2, pictured in Figurk is a compact rotary servo system that can be
used to perform a variety of classic servo control and inverted pendilased experiments. The
QUBEServo 2 comes in three versions: the USB Interface, Direct I/O Interface, and NI myRIO Interface.
The QUBEervo 2 USB Interface has its own bmilpower amplifier and data acquisition device. The
QUBEServo 2 Direct I/O Interface also has an integrated amplifier but allows an external DAQ device
to interface to its I/O. The QUBEervo 2 myRIO Interface alsas a buikin amplifier, and allows a
direct connection to the NI MXP connector. For all versions, the system is driven using -alrilect
18V brushed DC motor housed in a solid aluminium frame. Twaaddodules are supplied with the
system: an inertél disc and a rotary pendulum. The modules can be easily attached or interchanged
using magnets mounted on the QUBErvo 2 module connector. Singladed rotary encoders are
used to measure the angular position of the DC motor and pendulum.

Main QUBESewo 2 features:
1 Compact and complete rotary servo system

18V directdrive brushed DC motor

Encoders mounted on DC motor and pendulum

Built-in USB DAQ device (only for QuiBtvo 2 USB Interface)

1

1

1 Built-in PWM amplifier
1

1 Inertial disc module
1

Rotary pendulum module [5].

Fig.1 QUANSER QUBErvo Rotary Inverted Pendulum System

B. Hardware Components

The main QUBEervo 2 components are listed in table I. The components on the @eBa 2
USB Interface arelhelled in figure 2(a), the components on the QuiEvo 2 Direct I/O Interface are
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shown in figure 2(b), and the components on the Q38E/0 2 myRIO Interface are in figure 2(c). The
interaction between QUANSER QULEvo 2 components is also shown iufeg3.

TABLE
QUBESERVO 2 COMPONENTS

ID COMPONENTS ID COMPONENTS

1 Chassis 11 Rotary arm hub

2 Module connector 12 Rotary pendulum magnets
3 Module connector magnets | 13 Pendulum encoder

4 Status LED strip 14 DC motor

5 Module encoderconnector 15 Motor encoder

6 Power connector 16 QUBEServo 2 DAQ/amplifier board
7 System power LED 17 SPI Data Connector

8 Inertia disc 18 USB connector

9 Pendulum link 19 Interface power LED
10 Rotary arm rod 20 Internal data bus

MYRIO Conne,
—

6\ -

1SV 0

Stor A/g
> Power

2.0a

Fig. 2(a)QUBE-Servo 2 USB Interface
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Fig. 2(b) QUBEServo 2 Direct I/O Interface

Fig. 2(c) QUBEServo 2 myRIQnterface

06

b =2

Encoder 1 5

Fig. 2€) QUBE-Servo 2Top View
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1) DC Motor

The QUBEervo 2 includes a diredtive 18V brushed DC motor. The motor specifications are
given in tabldl.

2) Encoder

The encoder used to measure the angular position of the DC motor and pendulum on the QUBE
Servo 2 is a single ended optical shaftoder. It outputs 2048 counts per revolution in quadrature
mode (512 lines per revolution). A digital tachometer is also available for angular speed in counts/sec
on channel 14000.

The encoder used to measure the angular position of the DC maoidh pendulum on the QUBE
is the US Digital E&12-118 singleended optical shaft encoder. The complete specification sheet of
the E8P optical shaft encoder is given in ES8P Data Sheet.

3) Data acquisition (DAQ) device

The QUBHEervo 2 includes an integrated data acquisition device with twdiP&ncoder
channels with quadrature decoding and one PWM analog output channel. The DAQ also incorporates
a 12bit ADC which provides current sense feedback for the matbe current feedback is used to
detect motor stalls and will disable the amplifier if a prolonged stall is detected.

4) Power Amplifier
The QUBHEervo 2 circuit board includes a PWM voltagatrolled power amplifier capable to
providing 2A peak etent and 0.5A continuous current (based on the thermal current rating of the

motor). The output voltage range to the load is between 10 V.
Amplifier Input Connector

Theamplifier input RCA connector on the QUBE&rvo Direct I/O Interface is@lvn in figure Zb).
Itis single ended and has a range of 10V. As shown in 8gitlis connected to the amplifier command
which then drives the motor.

5) Encoder Connector

The Encoder 0 and Encoder i DIN connectors pictured on the QUBErvo Direct 1/O
interface in figure ) output the measurements from the motor encoder and the amtd module
(e.g., pendulum) encoder, respectively.

6) MXP Connector
The myRIO Connector A/B connector pictured on the QB&8Eo myRIO Interface in figur&R

is used to connect the amplifier command line, and encoder readings from the -Q&B&
components to either of the two NI myRIO MXP conoex{5].

C. System Parameters
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QUANSER QUESERVO 2 ROTARY INVERTED PENDULUM SYSTEM PARAMETERS

TABLE I

DC Motor
Vhom | Nominal input voltage 18.0V
Thom Nominal torque 22.0 mMNm
wnom Nominal speed 3050 RPM
Inom Nominal current 0.540 A
Rm Terminalresistance 8. 4 (
k¢ Torque constant 0.042 Nm/A
km Motor backemf 0.042
constant V/(rad/s)
Im Rotor Inertia 4.0x10°
kg-m?
Lm Rotor inductance 1.16 Mh
mp Module attachment 0.0106 kg
hub mass
I Module attachment 0.0111 m
hub radius
Jn Module attachment 0.6 x 10
moment of Inertia kg m?
Inertia Disc Module
My Disc mass 0.053 kg
rd Disc radius 0.0248 m
Rotary Pendulum Module
m; Rotary arm mass 0.095 kg
L, Rotary arm length 0.085 m
(pivot to end of metal
rod)
mp Pendulum linknass 0.024 kg
Ly Pendulum link length 0.129 m

D. State Space Model of Rotary Inverted Pendulum

1) DC Motor Modelling

This section summarizes how to find the equations of motion of the DC motor. The motor electrical
equation is
L O YQO Q—0 m Q)
whereb 0 is the motor input voltage (the control inputy, is the motor electrical resistanc®) o
is the current/Q is the backemf constant, and 0 is the angulaposition of the motor shaft (i.e.,
the inertia disc). The motor shaft equation is expressed as
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v —0 T o @)
whereV s the total or equivalent moment of inertia acting on the motor shaft dnds the applied
torgue from the DC motor. Based on the current applied, the torque is

t 6 QQo 3)
whereQ is the motor current torque constant [5].

2) Rotary Pendulum Model

The rotary pendulum model is shown in figure 2.4. The rotary arm pivot is attached to the QUBE
Servo 2 system and is actuated. The arm has a lengthaofmoment of inertia ofy, and its angle
—increases positively when it rotates counter clockwiBee servo (and thus the arm) should turn in
the CCW direction when the control voltage is positive > 0.

The pendulum link is connected to the end of the rotary arm. It has a total lengih ahd it
center of mass is at 'O 0 7¢. The momenbf inertia about its center of mass is. The rotary
pendulum anglex is zero when it is hanging downward and increases positively when rotated CCW

[5].

I=L,/2

Fig. 4Rotary Pendulum Model

The equations of motion for the pendulum system were developed using the Euler LaGrange
method. This systematic method is often used to model complicated systems such as robot
manipulators with multiple joints. The total kinetic and potential energy of ¢listem is obtained,
then the Lagrangian can be found. A number of derivatives are then computed to yield the EOMs. The
resultant nonlinear EOM are:

0 0i Q¢ — & awéll cOOBEIAT G
a aDEI  t @ 4)
and

O] G awéli— VOEIRITIG- & QOEI Q|

()

3228



Nat. Volatiles & Essent. Oils, 2021; 8(5): 3221-3241

where0 & 1 /3 is the moment 6 inertia of the rotary arm with respect to the pivot (i.e. rotary
arm axis of rotation) and =& 0 /3 is the moment of inertia of the pendulum link relative to the
pendulum pivot (i.e. axis of rotation of pendulum). The viscous damping amtitige rotary arm and
the pendulum link aré and &, respectively. The applied torque at the base of the rotary arm
generated by the servo motor is
T — 0 Q— (6)
When thenonlinear EOM are linearized about the operating point, the resultant linear EOM for the
rotary pendulum is defined as:
V— & ai T o— 7)

and

0] & a+ & Qa| O (8)
Solving for the acceleration terms yields:

— — 4 ai QY vVo— & ab| of )

and
| - & Qa & ad— 0 & i at (10)

Where,

O V0O & ai (11)
The linear state space equations are

@WO=0 ad+0 00 (12)
and

WO O6w 060 (13)

wherex is the vector of state variables x 1), u is the control input vectorr(x 1),y is the output vector
(m x 1),Ais the system matrixn(x n), B is the inputmatrix (1 x r), C is theoutput matrix (m x n) andD
is the feedforwardmatrix

(mxr).
For the rotary pendulum system, the state and output are defined
wo —0 ] 06 —0 ]| 07T (14)
and
wo —0 ] ofT (15)

Thus, the state space model obtained is
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E. Swing-Up Control

In theory, if the arm angle is kept constant and the pendulum is given an initial perturbation, the
pendulum will keep on swinging with constant amplitude. The idea of energy control is based on the
preservation of energy in ideal systeri$te sum of kinetic and potential energy is constant. However,
friction will be damping the oscillation in practice and the overall system energy will not be constant.
It is possible to capture the loss of energy with respect to the pivot acceleratioohivhturn can be
used to find a controller to swing up the pendulum. The nonlinear equation of motion of a single
pendulum based on the diagram in figure 5 is

O] 6 & Qai Qt|a adwéia 1 (16)
where| 0 is the angle of the pendulum defined as positive when rotated counter clockwiisethe
moment of inertia with respect to the pivot pointy is the mass of the pendulum link,is the

distance between the pivot and the center of mass, anal isthe linear acceleration of the pendulum
pivot (positive along theo axis).

Yo

Fig. 5Freebody Diagram of Pendulum

3230



Nat. Volatiles & Essent. Oils, 2021; 8(5): 3221-3241

The potential energy of the pendulum is
00 & Qp &I |
and the kinetic energy is
O =0

Note that the moment of inertia used to define the pendulum kinetic energy is with respect to its
center of mass. The potential energy is zero when the pendulum is at rest @ and equalO

¢ & "Qdavhen the pendulum is upright at “. The sunof the potential and kinetic energy of the
pendulum is
0 -0 G "Qp OE | (17)
R + m u x(t)=Ax(t)+Bu(t) y
Differentiating equation 17 yields > y@® = cx@) +pu®y [
O — 0|l & "QailQt| x
(18)

[« ]
Solving for0 | in equation 16

V| a Qai Qa' Cawel | Fig. 6LQR Block Diagram

and substituting this into equation 18 gives
0 & 6100E | |

Since the acceleration of the pivot soportional to current driving the arm motor and thus also
proportional to the motor voltage, it is possible to control the energy of the pendulum with the
proportional control law
6 O O] 0éi,] (19)
This control law will drive the energy of the pendulum towards the reference energ@ 6e®
‘0. By setting the reference energy to the pendulum potential ene@yy, O, the control law will
swing the link to its upright posith. Notice that the control law is nonlinedecause it includes
nonlinear terms (e.gd ¢ i). [Further, the control changes sign wherchanges sign and when the
angle is w rdegrees For the system energy to change quickly, the magnitude of the cbsigoal
must be large. As a result, the following swing up controller is implemented in the controller as
6 i@ M0 0 OEChHEi | (20

where Q is a tunable control gain and the & function saturates the control signal at the
maximum acceleration of the pendulum pivdt, . The expressio® E Cd ¢ i is used to enable
faster control switchingThe control law in equation 20 finds the linear acceleration needed to swing
up the pendulum. Because the control variable in the Qt#E/0 2 is motor voltage) 0, the
acceleration needs to be converted into voltage. This can be done using the expression

Y ia

L O 70 0
Q
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where'Y is the motor resistanceq is the curent torque constant of the motoi, is the length of
the rotary arm andx is the mass of the rotary arm [5].

. LQROONTROLLERNDADPALGORITHM

A. LQR Controller

The LQR controller is a wkthown method that provides optimally controlled feedback gains to
enable the closedbop

R 4 N u &(£)=Ax(t)+Bu(t) Y
y(©) = Cx(&) + Du(t)

x

(]

Fig. 6LQR Block Diagram

stableand highperformance design of systems. The block diagram of LQR controller is shown in figure
6.

LQR controller determines the feedback law to minimize the size of the state vector in the least
time with the least control effort. The assumptions that anade while designing LQR controller are
all the states of system are well known and the system is completely controllable. The settings of a
LQR controller governing either a machine or process (like an airplane or chemical reactor) are found
by using a rathematical algorithm that minimizesast functionwith weighting factors supplied by
a human (engineer). The cost function is often defined as a sum ofddwations of key
measurements, like altitude or process temperature, from their desired values and it is given by,

iadd | ® 00 wd 0 0YO6O0 Qo (21)
Whered N Y mand’YN Y > 0 are the weight matrices that@userprescribed. The role

of the weighting matrices Q and R is to establish a traffibetween performance and actuator effort.
This Q weighting matrix refers to the performance and R weighting matrix refers to actuator effort [6].

B. ADP Algorithm

RL is avery useful tool in solving optimization problems by employing the principle of optimality
from DP. In particular, in control systems community, RL is an important approach to handle optimal
control problems for unknown nonlinear systems. DP provides asemial foundation for
understanding RL. One class of RL methods is built upon theaittorstructure, namely adaptive
critic designs, where an actor component applies an action or control policy to the environment, and
a critic component assesses thalue of that action and the state resulting from it. The combination
of DP, NN, and actarritic structure results in the ADP algorithms [7].

There are many schemes available in ADP to enhance the LQR controller performance. Some of the
algorithms are he model based iterative scheme, model free iterative scheme, dynamic output
feedback scheme. The model based iterative scheme requires system dynamics for producing the
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output, whereas the model free iterative scheme continuously monitors the state tajes of the
system for producing the output and it also does not require the system dynamics [4].

The model based iterative scheme has two types which are Policy Ite(Rijpand Value Iteration
(VI). The PI algorithm requires an initially stabilipodicyv and utilizes Lyapunov equation which
makes computation process easier. The VI algorithnpetform recursive updates on the cost matrix
0 instead of solving the Lyapunov equation in every iteration. It no longer requires stable inlitigl po
and generally take more iterations to converge. However, both algorithms are rbadel as they
require full model information (A, B, C) [4].

1) Model Based Policy Iteration Algorithm

It is one of the computational iterative methods. The key equation in this algorithm is the
Lyapunov equation, which is easier to solve. This method essentially consists of a policy evaluation
step followed by a policy update step. The first step in thisrthm is to compute the cosi of the
control policy0d by solving the Lyapunov equati@&2. The second step is to compute an updated
policy0 . This Pl algorithm requires an initially stabilizing palicyFor an ope#ioop stable system,
the initial stabilizing policy can be set to zero. However, for the case of unstable systems trial and
error method should be followed for finding theitial stabilizing policy in PI algorithm. The steps
followed for obtaining the optimized K matrix are given below

i. Initialize a stable control poliay .
ii. Evaluate Policy:

5 5 © LI ol

© 60 v UV O O0OU 0 UL Y ™
@ 60 0 0(@® 60 0 0 Y (22
(A1)P + P(B1) = @mich is similar to Sylvester equation which solves P for given A1,B1 and C1.

Where,

iii.  Improve Policy:
0 =Y 60 (23)
iv. Repeat and Terminate:
Repeat with i = i+1 until
A 0 £ Q

for some very small positive constanf4].
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IV. SOFTWAREPLEMENTATION

A. State Feedback Model

Initially, the system is unstable. In order to make the system stable, state feedback gain K is
designed. The figure 7 shows the state feedback model of QUBEZXgptant.

Rotary arm Angle

&' = Ax+Bu I
y = Cx+Du |'_
Step QUBE SERVOZ Pendulum Angle
Inverted Pendulum System

¥
—

—..5
K gain

R

Terminator

=

Terminatori

Fig. 7 State Feedback Simulink Block Diagram
In the abovdigure 7, state feedback gain K determines the stability of the plant. K gain is obtained
using 2 different methods (LQR and ADP) and their performances were plotted and compared in the
section V.

B. Swing-Up and Balance Control

The swingup control is usedor bringing the pendulum from downward position to upright
position and the balance control is used for maintaining the pendulum at upright position within a
tolerance limit. The swingp and balance control implemented for rotary inverted pendulum syste
in MATLABESIMULINK platform is shown in figure 8.

Fig. 8Swing-Up and Balance Control Simulink Block Diagram

The swingup control subblock is shown in figure 9. The eneitggsed swingup control is a sub
block in swingup control block.

3234



Nat. Volatiles & Essent. Oils, 2021; 8(5): 3221-3241
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u_max (m/s"2) Rt D_’
D

Er(J)
Acceleration o Torque  TOTgue to Voltage
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miod Energy-Bazed Swing-Up Cantrol

Fig. 9Swing-up ControlSubBlock

Energybased swingip control block shown in figure 10 will perfommathematical operations for
the given inputs and provide outputs namely pendulum energy and linear acceleration of pendulum
pivot. This control block is implemented based on the equation 20 discussed in section Il.

Fig. 10 Energy Based SwingJp Control SubBlock

Last sukblock is pendulum energy which will give pendulum energy as output when the pendulum
angle and its derivative are given as inputs. By using manplscks, mathematical operations are
performed to obtainswingupcontrol which will bring up the pendulum to upright position.

V. RESULS

A. Open Loop and Closed Loop Response

The open loop and closed loop response of the QB&fo 2 rotary inverted pendulum system is
shown in figure 11.

The QUBEervo 2 rotary inverted pendulum system is inherently open loop unstable and non
linear. As seen in the left side of the figure 11, it is evident that the pendulum angle is unstable and
produces unbounded output. The optimal control is ugedfind the optimum controller gain to
balance the pendulum at the upright position. LQR Controller is the optimal control used to determine
the controller gain matrix K to make the inverted pendulum system closed loop stable. In the right
side of figurell, the closed loop response of pendulum angle is plotted. The K mi&trix1.0000
35.0244-1.4474 3.0909] obtained by LQR Control is used in closed loop Simulink model shown in
figure 7 to obtain the closed loop stable response. LQR controller basgditohave smoother
performance, less setting time and the overshoot depends on Q and R Cost matrices.
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Pendulum Angle
o

Without K with K

Open - loop Closed - loop
0.025

0.02

0.015

Pendulum Angle

Time Time

Fig. 11 Open Loop and Closed Loop Response

B. LQR BASED CONTROL OUTPUT

LQR based feedback gain K is determined using the MATLAB code (Refer Appendix) and its
response is plotted in figure 12. By tuning Q and R values, the output will change. In the figure 12, two
different Q matrices are used to find the gain matrix K. Thepawase of pendulum angle for two
different K gain matrices are plotted in figure 12.

R value is set to 1. The two different Q matrices are used to obtain two different outputs and those
matrices are shown below. For Low Q matrix, the settling meé overshoot will be high. To obtain
less settling time and minimum overshoot, High Q matrix can be used. Higher the Q value, better the

performance. The comparative graph has been shown in the figure 12.
p T

LowQ:E

4° 343
434

Tt
Tt

383 39333

High Q = T p TUTIT

333 o

Pendulum Angle

0.03

0.025

0.02

0.015

0.01

0.005

LQR Based Control

——HighQ
—+—Low Q

-0.005
0

I . .
2 3 4 5 6 7 8 9 10
Time(seconds)

Fig. 12LQR Based Control Response
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C. ADP Based Control Output

By using the algorithm shown in section I, gain matrix K is obtained. Since it is an Iterative method
i terati

and has a terminateondition @S Q )@ fida® r ov e me n't
has to be tested before implementing the value in the QUBE Sretary inverted pendulum plant.

i n each

The figurel3 shows the K value based on different iterations and theré& 14 shows how the

final K

The figurel5 compares the K value of LQR and ADP. Both outputs will be similar since Q and R

v al

ue of the algorithm

changes

based

value are same for both methods. In LQR, A, B, Q and R matrices are reqtimddtonatrix. In ADP,

in addition to A, B, Q, R, the initial stabilizing gain matrix KO is also needed such that the algorithm will
improve the K value for each iteration and provides best possible K value based on given inputs and

terminate condition.

Initial stabilizing gain matrix KRB & [2 80-4 40)) has worst performance as it has more oscillations
and settles very slowly. The gain matkig (K1 =[-1.25 55.9809061.72095 20.3323283pPbtained
after first iteration has less oscillations but it thes slowly. The gaimatrix K2(K2 =[-1.000304
40.422411 -1.221734 6.028915%]obtained after second iteratiomas no oscillations and settles
quickly. The gain matrix( = [1.0000 20.6532-1.0202 2.3935]obtainedafter the last iteration

Khas better performance and settles quickly. Thus, if the initial stabilizing gain matrix KO is known,
then the ADP Algorithm will evaluate the policy and produces better gain matrix which have less
settling time and gives better performance compared tottbfinitial stabilizing matrix KO.

Pendulum Angle

KO (Initial Gain) K1 (Iteration 1)

Fig. 13 Simulation Results of ADP Algorithm Based on lteratior

LQR vs ADP
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T
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.
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Fig. 14Simulation Results of ADP Algorithm Based
Value to Terminate the Loop
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The figure 14 will explainthemp or t &ncwalode “in the elimination

the Qvalue is 1000, the settling time is not very low. In the below figure, it is inferred that@®thtie

is reduced, the settling time will also reduce. In the ADP algorifanglue should be a positive
constant and less than 1, so the rangei$ O to 1. Lesser th@value, smaller the settling time. For
the QUBEServo 2 rotary inverted pendulum system, the smalt@stlue will be 0.000000000629, any
value less than this smatievalue has no impact on the K value. In the figure, the pendulum angle for
the smallestQvalue has very low settling time and quicker response.

Ko K(e =1000)

0 2 4 6 8 0 2 4 6 8

K(e=100) K(e=0.0000000006285)

The figurel5 shows the comparison of conventional LQR and ADP based LQR controller pendulum
angle output of QUBEBervo 2 rotary inverted pendulum system. The LQR controller has better
performance for the system with gain matkx= [1.0000 35.02441.4474 3.0909]In ADP algorithm,
this gain is used as initial stabilizing gain matrix. The updated K matrix obtained from ADP algorithm
K = }1.0000 20.65321.0202 2.3935hlso gives better performance similar to LQR based control
response. The only differeads that there will be a slight change in overshoot and settling time. This
change has been plotted in the figure 15.

D. Swing-Up and Balance Control

The state feedback gain matrix K value obtained from LQR and ADP methods are usedtip swing
and balare control Simulink block shown in figure 8 and their performances are compared here.

1) Initial Stabilizing K Matrix Response

The output for initial stabilizing K matrix used in ADP algorithmf2 80-4 40) is shown in figure
16,17 and18.

In figure 16 the actual rotary arm angle takes more seconds to track the set point rotary arm
angle. In figurel7, the pendulum angle output has worst performance, more oscillations and very
slow response. As this control gain has worst performance, it talee pendulum energy to make
the system stable. This control gain is given as initial stabilizing gain in the ADP algorithm to increase
the performance. The updated K matrix from ADP algorithm and its output performances were shown
in the figuresl9, 20 and 21. The outputs for initial stabilizing K matrix are shown in below figies
to 18.
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| —— Desired ROtary Arm Angle

—— Rotary Arm angle of Plant

Fig. 16Desiredvs System Rotary Arm Angle for Initial Stabilizing K Matrix Used ir
ADP algorithm

Fig. 18Pendulum Energy for Initial Stabilizing K Matrix Used in ADP Algorithm

From figure 16, 17, 18, it is inferred that the initial stabilizing K matrix produoest performance

with more settling time and oscillations. Here the pendulum takes around 7 seconds to settle and also
it consumes more energy for settling. Thus, using this K matrix value for controlling the rotary inverted
pendulum system is not advisiab

2) ADP Based K Matrix Response

The output for updated K matridX(= [1.0000 20.6532-1.0202 2.3935]obtained by ADP
algorithm is shown in figure 19, 20 and 21.
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8 3 o = &
T T T

Fig. 19Desiredvs System Rotary Arm Angl®r K Matrix
Updatedby ADP

Fig. 21 PendulunEnergyfor K Matrix Updatecby ADP

From figure 19, 20, 21, it is inferred that the ADP based K matrix produces best performance with
less settling but with more overshoot. It also consumes less pendulum energy to settle the pendulum
at the right position. When compared with initial stabilig K matrix response, the updated K matrix
obtained from ADP algorithm has smooth performance and quicker response but with slightly more
overshoot. Thus, using the K matrix obtained from ADP algorithm, it is possible to obtain best
performance results io QUBEServo 2 rotary inverted pendulum system.

3) LQR Based K Matrix Response

The output for updated K matriX(= [1.0000 35.0244-1.4474 3.0909]obtained by LQR is
shown in figure 22, 23 and 24.
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Fig. 22Desiredvs System Rotary Arm Angle for K Matrix
Obtainedby LQR

Fig. 24 PendulumEnergyfor K Matrix Obtainedby LQR

The outputs obtained using LQR gain has similar performance when compared to updated K
matrix obtained from ADP algorithm. ADP based output has less settling time and slightly more
overshoot when compared with LQR based outftrom the figures 16 to 24, it is inferred that the
initial stabilizing K matrix used in ADP algorithm has worst performance compared to other two K
matrix values.

The rotary arm angle of the plant will track the desired angle very slowly in figure 16 (initial
stabilizing K matrix), whereas it tracks very quickly in figure 19 (updated ADP K matrix). The
performance of LQR based K matrix is little slower th@wupdated ADP K matrix.

Comparing the pendulum angle responses for three different K matrix, it is confirmed that the
updated K matrix obtained by ADP algorithm settles very quickly but has higher peak overshoot when
compared with the responsesbtained from LQR based K matrix.

VI. CGONCLUSION

Thus, the ADP algorithm is trained effectively using MATRIAMBILINK and the updated gain
matrix K is used to obtain balance control. The simulation results presented shows that the ADP based
LQR control givebetter performance and the output settles little quickly than conventional LQR
controller. The future scope is to implement the ADP based LQR controller in real time system to
achieve better performance and provide real time disturbances to analyse fibeaty of ADP based
LQR controller in real time.
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