
Nat. Volatiles & Essent. Oils, 2021; 8(5): 3221-3241 

3221 
 

 

 

Adaptive Dynamic Programming Based Linear Quadratic 

Regulator Design for Rotary Inverted Pendulum System 

Gavtham Hari Kumar B#1, Vimal E#2 

Department of Instrumentation and Control Systems Engineering, 

PSG College of Technology, Coimbatore, India. 
#1UG Scholar, #2Assistant professor 

#1gavthambabu@gmail.com  

#2evm.ice@psgtech.ac.in

Abstract  

The rotary inverted pendulum system is an inherently unstable system with highly nonlinear dynamics. It is used for design, 

testing, evaluating and comparing of different classical and contemporary control techniques. The goal of this project is to 

design an ADP based LQR controller for the rotary inverted pendulum system. Here model-based policy iteration algorithm 

is used to design the ADP based LQR controller. The swing-up and balance control is also implemented for the rotary inverted 

pendulum system using ADP based LQR controller gain. The response of the rotary inverted pendulum system with 

conventional LQR controller, ADP based LQR controller, swing-up and balance control is illustrated using MATLAB–SIMULINK 

platform. The result obtained after comparing the ADP based LQR controller response with conventional LQR controller, the 

rotary inverted pendulum system is stabilized faster with ADP based LQR controller and the swing-up and balance control 

response of the rotary inverted pendulum system has also improved due to ADP based LQR controller gain. 

Keywords—ADP, LQR controller, Swing up and balance control. 

 

I. INTRODUCTION 

The inverted pendulum is an inherently unstable system with highly nonlinear dynamics. This is a 

system which belongs to the class of under-actuated mechanical systems having fewer control inputs 

than the degree of freedom. This renders the control task more challenging, making the inverted 

pendulum system a classical benchmark for the design, testing, evaluating and comparing of different 

classical and contemporary control techniques. Being an inherently unstable system, the inverted 

pendulum is among the most difficult systems, and is one of the most important classical problems. 

 

The numerous practical applications of the rotary inverted pendulum system make its study 

pertinent. In robotics, balancing systems are developed using inverted pendulums. These find 

application in transport machines that need to balance objects, in systems that support walking for 

patients, in robots that are used in domestic and industrial use and in object transport using drones. 

Therefore, controlling this system is essential and throughout the years many classical control 

solutions are proposed. However, for more efficient control this project proposes an ADP based LQR 

controller for controlling the rotary inverted pendulum system. 

 

H. Wang, H. Dong, L. He, Y. Shi and Y. Zhang, "Design and Simulation of LQR Controller with the 

Linear Inverted Pendulum," International Conference on Electrical and Control Engineering, vol. 2, pp. 

699-702, 2010 - This paper focused on modelling and performance analysis of linear inverted 

pendulum and design and simulation of LQR controller. Main to introduce how to build the 

mathematic model and the analysis of its system performance, then design a LQR controller in order 
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to get the much better control. Simulation is done to show the efficiency and feasibility of proposed 

approach [1]. 

F. A. Yaghmaie and S. Gunnarsson, "A New Result on Robust Adaptive Dynamic Programming for 

Uncertain Partially Linear Systems," IEEE 58th Conference on Decision and Control (CDC), vol. 71, pp. 

7480-7485, 2019 - This paper, presents a new result on robust adaptive dynamic programming for the 

Linear Quadratic Regulation (LQR) problem, where the linear system is subject to unmatched 

uncertainty. They assume that the states of the linear system are fully measurable and the matched 

uncertainty models unmeasurable states with an unspecified dimension. They used the small-gain 

theorem to give a sufficient condition such that the generated policies in each iteration of on-policy 

and off-policy routines guarantee robust stability of the overall uncertain system. The sufficient 

condition can be used to design the weighting matrices in the LQR problem and simulation example 

are given to demonstrate the result [2]. 

  

Y. Liu, Y. Luo and H. Zhang, "Adaptive dynamic programming for discrete-time LQR optimal tracking 

control problems with unknown dynamics," IEEE Symposium on Adaptive Dynamic Programming and 

Reinforcement Learning (ADPRL), vol. 9, pp.1-6, 2014 – In this paper, an optimal tracking control 

approach based on adaptive dynamic programming (ADP) algorithm is proposed to solve the linear 

quadratic regulation (LQR) problems for unknown discrete-time systems in an online fashion. First, we 

convert the optimal tracking problem into designing infinite-horizon optimal regulator for the tracking 

error dynamics based on the system transformation. Then we expand the error state equation by the 

history data of control and state. The iterative ADP algorithm of PI and VI are introduced to solve the 

value function of the controlled system. It is shown that the proposed ADP algorithm solves the LQR 

without requiring any knowledge of the system dynamics. The simulation results show the 

convergence and effectiveness of the proposed control scheme [3].  

 

S. A. A. Rizvi and Z. Lin, "Reinforcement Learning-Based Linear Quadratic Regulation of Continuous-

Time Systems Using Dynamic Output Feedback," in IEEE Transactions on Cybernetics, vol. 50, pp. 4670-

4679, 2020 - In this paper, we propose a model-free solution to the linear quadratic regulation (LQR) 

problem of continuous-time systems based on reinforcement learning using dynamic output 

feedback. The design objective is to learn the optimal control parameters by using only the measurable 

input-output data, without requiring model information. A state parametrization scheme is presented 

which reconstructs the system state based on the filtered input and output signals. Based on this 

parametrization, two new output feedback adaptive dynamic programming Bellman equations are 

derived for the LQR problem based on PI and VI. Unlike the existing output feedback methods for 

continuous-time systems, the need to apply discrete approximation is obviated. In contrast with the 

static output feedback controllers, the proposed method can also handle systems that are state 

feedback stabilizable but not static output feedback stabilizable. An advantage of this scheme is that 

it stands immune to the exploration bias issue. Moreover, it does not require a discounted cost 

function and, thus, ensures the closed-loop stability and the optimality of the solution. Compared with 

earlier output feedback results, the proposed VI method does not require an initially stabilizing policy. 

We show that the estimates of the control parameters converge to those obtained by solving the LQR 

algebraic riccati equation. A comprehensive simulation study is carried out to verify the proposed 

algorithms [4]. 
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II. SYSTEM DESCRIPTION 

A. QUANSER QUBE-SERVO 2 

The QUANSER QUBE-Servo 2, pictured in Figure 1, is a compact rotary servo system that can be 

used to perform a variety of classic servo control and inverted pendulum-based experiments. The 

QUBE-Servo 2 comes in three versions: the USB Interface, Direct I/O Interface, and NI myRIO Interface. 

The QUBE-Servo 2 USB Interface has its own built-in power amplifier and data acquisition device. The 

QUBE-Servo 2 Direct I/O Interface also has an integrated amplifier but allows an external DAQ device 

to interface to its I/O. The QUBE-Servo 2 myRIO Interface also has a built-in amplifier, and allows a 

direct connection to the NI MXP connector. For all versions, the system is driven using a direct-drive 

18V brushed DC motor housed in a solid aluminium frame. Two add-on modules are supplied with the 

system: an inertial disc and a rotary pendulum. The modules can be easily attached or interchanged 

using magnets mounted on the QUBE-Servo 2 module connector. Single-ended rotary encoders are 

used to measure the angular position of the DC motor and pendulum. 

 

Main QUBE-Servo 2 features:  

• Compact and complete rotary servo system  

• 18V direct-drive brushed DC motor  

• Encoders mounted on DC motor and pendulum  

• Built-in PWM amplifier  

• Built-in USB DAQ device (only for QUBE-Servo 2 USB Interface)  

• Inertial disc module  

• Rotary pendulum module [5].  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 QUANSER QUBE-Servo 2 Rotary Inverted Pendulum System 

 

B. Hardware Components 

The main QUBE-Servo 2 components are listed in table I. The components on the QUBE-Servo 2 

USB Interface are labelled in figure 2(a), the components on the QUBE-Servo 2 Direct I/O Interface are 
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shown in figure 2(b), and the components on the QUBE-Servo 2 myRIO Interface are in figure 2(c). The 

interaction between QUANSER QUBE-Servo 2 components is also shown in figure 3. 

 

TABLE I 

QUBE-SERVO 2 COMPONENTS 

ID COMPONENTS ID COMPONENTS 

1 Chassis 11 Rotary arm hub 

2 Module connector 12 Rotary pendulum magnets 

3 Module connector magnets 13 Pendulum encoder 

4 Status LED strip 14 DC motor 

5 Module encoder connector 15 Motor encoder 

6 Power connector 16 QUBE-Servo 2 DAQ/amplifier board 

7 System power LED 17 SPI Data Connector 

8 Inertia disc 18 USB connector 

9 Pendulum link 19 Interface power LED 

10 Rotary arm rod 20 Internal data bus 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2(a) QUBE-Servo 2 USB Interface 
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Fig. 2(b) QUBE-Servo 2 Direct I/O Interface 

 
Fig. 2(c) QUBE-Servo 2 myRIO Interface 

 

Fig. 2(d) QUBE-Servo 2 Modules 

 

Fig. 2(e) QUBE-Servo 2 Top View 
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1) DC Motor 

       The QUBE-Servo 2 includes a direct-drive 18V brushed DC motor. The motor specifications are 

given in table II. 

2) Encoder 

       The encoder used to measure the angular position of the DC motor and pendulum on the QUBE-

Servo 2 is a single ended optical shaft encoder. It outputs 2048 counts per revolution in quadrature 

mode (512 lines per revolution). A digital tachometer is also available for angular speed in counts/sec 

on channel 14000.  

 

        The encoder used to measure the angular position of the DC motor and pendulum on the QUBE 

is the US Digital E8P-512-118 single-ended optical shaft encoder. The complete specification sheet of 

the E8P optical shaft encoder is given in E8P Data Sheet. 

3) Data acquisition (DAQ) device 

        The QUBE-Servo 2 includes an integrated data acquisition device with two 24-bit encoder 

channels with quadrature decoding and one PWM analog output channel. The DAQ also incorporates 

a 12-bit ADC which provides current sense feedback for the motor. The current feedback is used to 

detect motor stalls and will disable the amplifier if a prolonged stall is detected. 

4) Power Amplifier 

  

        The QUBE-Servo 2 circuit board includes a PWM voltage-controlled power amplifier capable to 

providing 2A peak current and 0.5A continuous current (based on the thermal current rating of the 

motor). The output voltage range to the load is between ±10 V.  

Amplifier Input Connector  

 

        The amplifier input RCA connector on the QUBE-Servo Direct I/O Interface is shown in figure 2(b). 

It is single ended and has a range of 10V. As shown in figure 3, it is connected to the amplifier command 

which then drives the motor.  

 

5) Encoder Connector  

 

        The Encoder 0 and Encoder 1 5-pin DIN connectors pictured on the QUBE-Servo Direct I/O 

interface in figure 2(b) output the measurements from the motor encoder and the add-on module 

(e.g., pendulum) encoder, respectively.  

 

6) MXP Connector  

 

        The myRIO Connector A/B connector pictured on the QUBE-Servo myRIO Interface in figure 2(c) 

is used to connect the amplifier command line, and encoder readings from the QUBE-Servo 

components to either of the two NI myRIO MXP connectors [5]. 

C. System Parameters 
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TABLE II  

QUANSER QUBE-SERVO 2 ROTARY INVERTED PENDULUM SYSTEM PARAMETERS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D. State Space Model of Rotary Inverted Pendulum 

 

1) DC Motor Modelling 

This section summarizes how to find the equations of motion of the DC motor. The motor electrical 

equation is 

               𝑣𝑚(𝑡) − 𝑅𝑚𝑖𝑚(𝑡) − 𝑘𝑚�̇�𝑚(𝑡) = 0                 (1) 

where 𝑣𝑚(𝑡) is the motor input voltage (the control input), 𝑅𝑚 is the motor electrical resistance, 𝑖𝑚(𝑡) 

is the current, 𝑘𝑚 is the back-emf constant, and 𝑣𝑚(𝑡)is the angular position of the motor shaft (i.e., 

the inertia disc).The motor shaft equation is expressed as 

DC Motor 

Vnom Nominal input voltage 18.0 V 

τnom Nominal torque 22.0 mN-m 

ωnom Nominal speed 3050 RPM 

Inom Nominal current 0.540 A 

Rm Terminal resistance 8.4 Ω 

kt Torque constant 0.042 N-m/A 

km Motor back-emf 

constant 

0.042 

V/(rad/s) 

Jm Rotor Inertia 4.0 × 10−6  

kg-m2 

Lm Rotor inductance 1.16 Mh 

mh Module attachment 

hub mass 

0.0106 kg 

rh Module attachment 

hub radius 

0.0111 m 

Jh Module attachment 

moment of Inertia 

0.6 × 10−6  

kg- m2 

Inertia Disc Module 

md Disc mass 0.053 kg 

rd Disc radius 0.0248 m 

Rotary Pendulum Module 

mr Rotary arm mass 0.095 kg 

Lr Rotary arm length 

(pivot to end of metal 

rod) 

0.085 m 

mp Pendulum link mass 0.024 kg 

Lp Pendulum link length 0.129 m 
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                 𝐽𝑒𝑞�̈�(𝑡) = 𝜏𝑚(𝑡)                                    (2) 

where 𝐽𝑒𝑞 is the total or equivalent moment of inertia acting on the motor shaft and 𝜏𝑚 is the applied 

torque from the DC motor. Based on the current applied, the torque is 

                𝜏𝑚(𝑡) = 𝑘𝑡 𝑖𝑚(𝑡)                                   (3) 

where 𝑘𝑡 is the motor current torque constant [5]. 

 

2) Rotary Pendulum Model 

The rotary pendulum model is shown in figure 2.4. The rotary arm pivot is attached to the QUBE 

Servo 2 system and is actuated. The arm has a length of r, a moment of inertia of 𝐽𝑟, and its angle 

𝜃 increases positively when it rotates counter clockwise. The servo (and thus the arm) should turn in 

the CCW direction when the control voltage is positive, 𝑣𝑚 > 0. 

 

The pendulum link is connected to the end of the rotary arm. It has a total length of 𝐿𝑃 and it 

center of mass is at     𝐼 = 𝐿𝑃/2. The moment of inertia about its center of mass is 𝐽𝑝. The rotary 

pendulum angle α is zero when it is hanging downward and increases positively when rotated CCW 

[5]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The equations of motion for the pendulum system were developed using the Euler LaGrange 

method. This systematic method is often used to model complicated systems such as robot 

manipulators with multiple joints. The total kinetic and potential energy of the system is obtained, 

then the Lagrangian can be found. A number of derivatives are then computed to yield the EOMs. The 

resultant nonlinear EOM are: 

(𝐽𝑟 + 𝐽𝑝 𝑠𝑖𝑛 𝛼2)�̈� + 𝑚𝑝𝑙𝑟 𝑐𝑜𝑠 𝛼�̈� + 2𝐽𝑝 sin 𝛼 cos 𝛼�̇��̇� 

                              −𝑚𝑝𝑙𝑟 sin 𝛼�̇�2 = 𝜏 − 𝑏𝑟                                 (4) 

and  

       𝐽𝑝�̈� + 𝑚𝑝𝑙𝑟 𝑐𝑜𝑠 𝛼 �̈� − 𝐽𝑝 sin 𝛼 cos 𝛼 �̇�2 + 𝑚𝑝𝑔𝑙 sin 𝛼 =                                                − 𝑏𝑝�̇�                                           

(5) 

Fig. 4 Rotary Pendulum Model 
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where 𝐽𝑟 = 𝑚𝑟𝑟2/3 is the moment of inertia of the rotary arm with respect to the pivot (i.e. rotary 

arm axis of rotation) and 𝐽𝑝 = 𝑚𝑝𝐿𝑝
2 /3 is the moment of inertia of the pendulum link relative to the 

pendulum pivot (i.e. axis of rotation of pendulum). The viscous damping acting on the rotary arm and 

the pendulum link are 𝑏𝑟 and 𝑏𝑝, respectively. The applied torque at the base of the rotary arm 

generated by the servo motor is 

                                𝜏 =
𝑘𝑚

𝑅𝑚
(𝑣𝑚 − 𝑘𝑚�̇�)                             (6) 

When the nonlinear EOM are linearized about the operating point, the resultant linear EOM for the 

rotary pendulum is defined as: 

                            𝐽𝑟�̈� + 𝑚𝑝𝑙𝑟�̈� = 𝜏 − 𝑏𝑟�̇�                           (7) 

and  

                       𝐽𝑝�̈� + 𝑚𝑝𝑙𝑟�̈� + 𝑚𝑝𝑔𝑙𝛼 = −𝑏𝑝�̇�                   (8) 

Solving for the acceleration terms yields: 

             �̈� =  
1

𝐽𝑡
(𝑚𝑃

2𝑙2𝑟𝑔𝛼 − 𝐽𝑝𝑏𝑟�̇� + 𝑚𝑝𝑙𝑟𝑏𝑝�̇� + 𝐽𝑝𝜏)        (9) 

and 

      �̈� =
1

𝐽𝑡
(−𝑚𝑝𝑔𝑙𝐽𝑟𝛼 + 𝑚𝑝𝑙𝑟𝑏𝑟�̇� − 𝐽𝑝𝑏𝑝�̇� − 𝑚𝑝𝑟𝑙𝜏)      (10) 

Where, 

                               𝐽𝑡 = 𝐽𝑝𝐽𝑟 − 𝑚𝑃
2𝑙2𝑟2                              (11) 

The linear state space equations are 

                               �̇�(𝑡)=𝐴𝑥(𝑡)+𝐵𝑢(𝑡)                             (12) 

and  

                            𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)                           (13) 

where x is the vector of state variables (n x 1), u is the control input vector (r x 1), y is the output vector 

(m x 1), A is the system matrix (n x n), B is the input matrix (n x r), C is the output matrix (m x n) and D 

is the feedforward matrix  

(m x r). 

       For the rotary pendulum system, the state and output are defined 

                     𝑥(𝑡) = [𝜃(𝑡)   𝛼(𝑡)  �̇�(𝑡)   �̇�(𝑡) ]T                        (14) 

and 

                                𝑦(𝑡) = [𝜃(𝑡)   𝛼(𝑡)]T                                        (15) 

Thus, the state space model obtained is  

 

A = [

0 0 1 0
0 0 0 1
0 152.0057 −10.1381 −0.5005
0 264.3080 −10.0202 −0.8702

] 
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B = [

0
0

50.6372
50.0484

] 

 

C = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] 

 

D = [

0
0
0
0

] 

E. Swing-Up Control 

In theory, if the arm angle is kept constant and the pendulum is given an initial perturbation, the 

pendulum will keep on swinging with constant amplitude. The idea of energy control is based on the 

preservation of energy in ideal systems: The sum of kinetic and potential energy is constant. However, 

friction will be damping the oscillation in practice and the overall system energy will not be constant. 

It is possible to capture the loss of energy with respect to the pivot acceleration, which in turn can be 

used to find a controller to swing up the pendulum. The nonlinear equation of motion of a single 

pendulum based on the diagram in figure 5 is 

         𝐽𝑝�̈�(𝑡) + 𝑚𝑝𝑔𝑙𝑠𝑖𝑛𝛼(𝑡) + 𝑚𝑝𝑙𝑢(𝑡)𝑐𝑜𝑠𝛼(𝑡) = 0     (16) 

 

where 𝛼(𝑡) is the angle of the pendulum defined as positive when rotated counter clockwise, 𝐽𝑝 is the 

moment of inertia with respect to the pivot point, 𝑚𝑝 is the mass of the pendulum link, 𝑙 is the 

distance between the pivot and the center of mass, and 𝑢(𝑡) is the linear acceleration of the pendulum 

pivot (positive along the 𝑥0 axis). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 Freebody Diagram of Pendulum 
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The potential energy of the pendulum is 

𝐸𝑝(𝑡) = 𝑚𝑝𝑔𝑙(1 − 𝑐𝑜𝑠𝛼) 

and the kinetic energy is 

𝐸𝑘 =
1

2
𝐽𝑝�̇�2 

Note that the moment of inertia used to define the pendulum kinetic energy is with respect to its 

center of mass. The potential energy is zero when the pendulum is at rest at 𝛼 = 0 and equals 𝐸𝑝 =

2 𝑚𝑝𝑔𝑙 when the pendulum is upright at 𝛼 = ± 𝜋. The sum of the potential and kinetic energy of the 

pendulum is 

                         𝐸 =
1

2
𝐽𝑝�̇�2 + 𝑚𝑝𝑔𝑙(1 − 𝑐𝑜𝑠𝛼)                 (17) 

Differentiating equation 17 yields, 

                         �̇� =
ⅆ𝐸

ⅆ𝑡
= 𝐽𝑝�̈��̇� + 𝑚𝑝𝑔𝑙𝑠𝑖𝑛𝛼�̇�                  

(18) 

Solving for 𝐽𝑝�̈� in equation 16, 

𝐽𝑝�̈� = −𝑚𝑝𝑔𝑙𝑠𝑖𝑛𝛼 − 𝑚𝑝𝑢𝑙𝑐𝑜𝑠𝛼 

and substituting this into equation 18 gives, 

�̇� = −𝑚𝑝𝑢𝑙�̇�𝑐𝑜𝑠𝛼 

Since the acceleration of the pivot is proportional to current driving the arm motor and thus also 

proportional to the motor voltage, it is possible to control the energy of the pendulum with the 

proportional control law 

                                 𝑢 = (𝐸 − 𝐸𝑟)�̇�𝑐𝑜𝑠𝛼                          (19) 

       This control law will drive the energy of the pendulum towards the reference energy, i.e. 𝐸(𝑡) →

𝐸𝑟. By setting the reference energy to the pendulum potential energy, 𝐸𝑟 = 𝐸𝑝, the control law will 

swing the link to its upright position. Notice that the control law is nonlinear because it includes 

nonlinear terms (e.g. 𝑐𝑜𝑠𝛼). Further, the control changes sign when �̇� changes sign and when the 

angle is ±90 degrees. For the system energy to change quickly, the magnitude of the control signal 

must be large. As a result, the following swing up controller is implemented in the controller as 

                 𝑢 =  𝑠𝑎𝑡 𝑢𝑚𝑎𝑥  (𝑘𝑒(𝐸 − 𝐸𝑟)sign(�̇�𝑐𝑜𝑠𝛼))         (20) 

where 𝑘𝑒 is a tunable control gain and the 𝑠𝑎𝑡 𝑢𝑚𝑎𝑥
 function saturates the control signal at the 

maximum acceleration of the pendulum pivot, 𝑢max. The expression sign(�̇�𝑐𝑜𝑠𝛼) is used to enable 

faster control switching. The control law in equation 20 finds the linear acceleration needed to swing 

up the pendulum. Because the control variable in the QUBE-Servo 2 is motor voltage, 𝑣𝑚(𝑡), the 

acceleration needs to be converted into voltage. This can be done using the expression 

𝑣𝑚(𝑡) =
𝑅𝑚𝑟𝑚𝑟

𝑘𝑡
𝑢(𝑡) 

Fig. 6 LQR Block Diagram  
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where 𝑅𝑚 is the motor resistance, 𝑘𝑡 is the current torque constant of the motor, 𝑟 is the length of 

the rotary arm and 𝑚𝑟 is the mass of the rotary arm [5]. 

 

III. LQR CONTROLLER AND ADP ALGORITHM 

 

A. LQR Controller 

The LQR controller is a well-known method that provides optimally controlled feedback gains to 

enable the closed-loop  

 

 

 

 

 

 

 

 

 

stable and high-performance design of systems. The block diagram of LQR controller is shown in figure 

6. 

LQR controller determines the feedback law to minimize the size of the state vector in the least 

time with the least control effort. The assumptions that are made while designing LQR controller are 

all the states of system are well known and the system is completely controllable. The settings of a 

LQR controller governing either a machine or process (like an airplane or chemical reactor) are found 

by using a mathematical algorithm that minimizes a cost function with weighting factors supplied by 

a human (engineer). The cost function is often defined as a sum of the deviations of key 

measurements, like altitude or process temperature, from their desired values and it is given by, 

          𝑟(𝑥, 𝑢) = ∫ (
∞

0
𝑦𝑇(𝑡)𝑄𝑦𝑦(𝑡) + 𝑢𝑇(𝑡)𝑅𝑢(𝑡))𝑑𝑡       (21) 

Where 𝑄𝑦  ∈ 𝑅𝑝×𝑝  ≥ 0 and 𝑅 ∈  𝑅𝑚×𝑚 > 0 are the weight matrices that are user-prescribed. The role 

of the weighting matrices Q and R is to establish a trade-off between performance and actuator effort. 

This Q weighting matrix refers to the performance and R weighting matrix refers to actuator effort [6]. 

B. ADP Algorithm 

RL is a very useful tool in solving optimization problems by employing the principle of optimality 

from DP. In particular, in control systems community, RL is an important approach to handle optimal 

control problems for unknown nonlinear systems. DP provides an essential foundation for 

understanding RL. One class of RL methods is built upon the actor-critic structure, namely adaptive 

critic designs, where an actor component applies an action or control policy to the environment, and 

a critic component assesses the value of that action and the state resulting from it. The combination 

of DP, NN, and actor-critic structure results in the ADP algorithms [7]. 

 

There are many schemes available in ADP to enhance the LQR controller performance. Some of the 

algorithms are the model based iterative scheme, model free iterative scheme, dynamic output 

feedback scheme. The model based iterative scheme requires system dynamics for producing the 

Fig. 6 LQR Block Diagram  

 

 

https://en.wikipedia.org/wiki/Loss_function
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output, whereas the model free iterative scheme continuously monitors the state trajectories of the 

system for producing the output and it also does not require the system dynamics [4]. 

 

The model based iterative scheme has two types which are Policy Iteration (PI) and Value Iteration 

(VI). The PI algorithm requires an initially stabilizing policy 𝐾𝑜 and utilizes Lyapunov equation which 

makes computation process easier. The VI algorithm will perform recursive updates on the cost matrix 

𝑃𝑖 instead of solving the Lyapunov equation in every iteration. It no longer requires stable initial policy 

and generally take more iterations to converge. However, both algorithms are model-based as they 

require full model information (A, B, C) [4]. 

 

1) Model Based Policy Iteration Algorithm 

It is one of the computational iterative methods. The key equation in this algorithm is the 

Lyapunov equation, which is easier to solve. This method essentially consists of a policy evaluation 

step followed by a policy update step. The first step in this algorithm is to compute the cost 𝑃𝑖 of the 

control policy 𝐾𝑖 by solving the Lyapunov equation 22. The second step is to compute an updated 

policy 𝐾𝑖+1. This PI algorithm requires an initially stabilizing policy 𝐾𝑜. For an open-loop stable system, 

the initial stabilizing policy 𝐾𝑜 can be set to zero. However, for the case of unstable systems trial and 

error method should be followed for finding the initial stabilizing policy 𝐾𝑜 in PI algorithm. The steps 

followed for obtaining the optimized K matrix are given below,   

 

i. Initialize a stable control policy 𝐾0. 

ii. Evaluate Policy: 

(𝐴 + 𝐵𝐾𝑖)𝑇𝑃𝑖 + 𝑃𝑖 (𝐴 + 𝐵𝐾𝑖) + 𝑄 + 𝐾𝑖
𝑇𝑅𝐾𝑖 = 0 

          (𝐴 + 𝐵𝐾𝑖)𝑇𝑃𝑖  + 𝑃𝑖(𝐴 + 𝐵𝐾𝑖) = −(𝑄 + 𝐾𝑖
𝑇𝑅𝐾𝑖)   (22) 

(A1)P + P(B1) = C1 which is similar to Sylvester equation which solves P for given A1,B1 and C1. 

Where, 

A1 = (𝐴 + 𝐵𝐾𝑖)𝑇 

B1 = 𝐴 + 𝐵𝐾𝑖 

C1 = -(𝑄 + 𝐾𝑖
𝑇𝑅𝐾𝑖) 

iii. Improve Policy:  

                                    𝐾𝑖+1 = −𝑅−1𝐵𝑇𝑃𝑖                           (23) 

iv. Repeat and Terminate: 

Repeat with i = i+1 until  

‖Pi − Pi−1‖ < 𝑒 

for some very small positive constant 𝑒 [4]. 
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IV. SOFTWARE IMPLEMENTATION 

A. State Feedback Model 

Initially, the system is unstable. In order to make the system stable, state feedback gain K is 

designed. The figure 7 shows the state feedback model of QUBE servo-2 plant. 

 

 

 

 

 

 

 

 

       In the above figure 7, state feedback gain K determines the stability of the plant. K gain is obtained 

using 2 different methods (LQR and ADP) and their performances were plotted and compared in the 

section V. 

B.  Swing-Up and Balance Control 

The swing-up control is used for bringing the pendulum from downward position to upright 

position and the balance control is used for maintaining the pendulum at upright position within a 

tolerance limit. The swing-up and balance control implemented for rotary inverted pendulum system 

in MATLAB-SIMULINK platform is shown in figure 8. 

 

 

 

 

 

 

 

 

The swing-up control sub-block is shown in figure 9. The energy-based swing-up control is a sub-

block in swing-up control block.  

 

 

Fig. 8 Swing-Up and Balance Control Simulink Block Diagram 

 

 

 

 

Fig. 7 State Feedback Simulink Block Diagram 
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Energy-based swing-up control block shown in figure 10 will perform mathematical operations for 

the given inputs and provide outputs namely pendulum energy and linear acceleration of pendulum 

pivot. This control block is implemented based on the equation 20 discussed in section II. 

         

 

 

 

 

 

Last sub-block is pendulum energy which will give pendulum energy as output when the pendulum 

angle and its derivative are given as inputs. By using many sub-blocks, mathematical operations are 

performed to obtain swing-upcontrol which will bring up the pendulum to upright position. 

 

V. RESULTS  

 

A. Open Loop and Closed Loop Response 

The open loop and closed loop response of the QUBE-Servo 2 rotary inverted pendulum system is 

shown in figure 11. 

       The QUBE-Servo 2 rotary inverted pendulum system is inherently open loop unstable and non-

linear. As seen in the left side of the figure 11, it is evident that the pendulum angle is unstable and 

produces unbounded output. The optimal control is used to find the optimum controller gain to 

balance the pendulum at the upright position. LQR Controller is the optimal control used to determine 

the controller gain matrix K to make the inverted pendulum system closed loop stable. In the right 

side of figure 11, the closed loop response of pendulum angle is plotted. The K matrix (K = [-1.0000 

35.0244 -1.4474 3.0909]) obtained by LQR Control is used in closed loop Simulink model shown in 

figure 7 to obtain the closed loop stable response. LQR controller based output have smoother 

performance, less setting time and the overshoot depends on Q and R Cost matrices. 

Fig. 10 Energy- Based Swing-Up Control Sub-Block 

Fig. 9 Swing-up Control Sub Block  
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B. LQR BASED CONTROL OUTPUT 

LQR based feedback gain K is determined using the MATLAB code (Refer Appendix) and its 

response is plotted in figure 12. By tuning Q and R values, the output will change. In the figure 12, two 

different Q matrices are used to find the gain matrix K. The response of pendulum angle for two 

different K gain matrices are plotted in figure 12.  

       R value is set to 1. The two different Q matrices are used to obtain two different outputs and those 

matrices are shown below. For Low Q matrix, the settling time and overshoot will be high. To obtain 

less settling time and minimum overshoot, High Q matrix can be used. Higher the Q value, better the 

performance. The comparative graph has been shown in the figure 12. 

    Low Q = [

1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

]           

          High Q = [

5000 0 0 0
0 0 0 0
0 0 100 0
0 0 0 0

] 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11 Open Loop and Closed Loop Response 

 

 

 

 

 

Fig. 12 LQR Based Control Response 
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C.  ADP Based Control Output  

By using the algorithm shown in section III, gain matrix K is obtained. Since it is an Iterative method 

and has a terminate condition (‘e’ value), improvement in each iteration and effectiveness of ‘e’ value 

has to be tested before implementing the value in the QUBE Servo-2 rotary inverted pendulum plant.  

The figure 13 shows the K value based on different iterations and the figure 14 shows how the 

final K value of the algorithm changes based on ‘e’ value.  

The figure 15 compares the K value of LQR and ADP. Both outputs will be similar since Q and R 

value are same for both methods. In LQR, A, B, Q and R matrices are required to find K matrix. In ADP, 

in addition to A, B, Q, R, the initial stabilizing gain matrix K0 is also needed such that the algorithm will 

improve the K value for each iteration and provides best possible K value based on given inputs and 

terminate condition.   

Initial stabilizing gain matrix K0 (K = [-2 80 -4 40]) has worst performance as it has more oscillations 

and settles very slowly. The gain matrix K1 (K1 = [-1.25 55.980906 -1.72095 20.3323283]) obtained 

after first iteration has less oscillations but it settles slowly. The gain matrix K2 (K2 = [-1.000304 

40.422411   -1.221734 6.028915]) obtained after second iteration has no oscillations and settles 

quickly. The gain matrix K (K = [-1.0000   20.6532   -1.0202    2.3935]) obtained after the last iteration 

K has better performance and settles quickly. Thus, if the initial stabilizing gain matrix K0 is known, 

then the ADP Algorithm will evaluate the policy and produces better gain matrix which have less 

settling time and gives better performance compared to that of initial stabilizing matrix K0. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13 Simulation Results of ADP Algorithm Based on Iteration 

 

 

 

 

 

 

Fig. 14 Simulation Results of ADP Algorithm Based on ‘E’ 

Value to Terminate the Loop 
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The figure 14 will explain the importance of ‘𝑒’ value in the elimination step of ADP algorithm. If 

the 𝑒 value is 1000, the settling time is not very low. In the below figure, it is inferred that if the 𝑒 value 

is reduced, the settling time will also reduce. In the ADP algorithm, 𝑒 value should be a positive 

constant and less than 1, so the range of 𝑒 is 0 to 1. Lesser the 𝑒 value, smaller the settling time. For 

the QUBE-Servo 2 rotary inverted pendulum system, the smallest 𝑒 value will be 0.000000000629, any 

value less than this smallest value has no impact on the K value. In the figure, the pendulum angle for 

the smallest  𝑒 value has very low settling time and quicker response. 

 

 

 

 

 

 

 

The figure 15 shows the comparison of conventional LQR and ADP based LQR controller pendulum 

angle output of QUBE-Servo 2 rotary inverted pendulum system. The LQR controller has better 

performance for the system with gain matrix K = [-1.0000 35.0244 -1.4474 3.0909]. In ADP algorithm, 

this gain is used as initial stabilizing gain matrix. The updated K matrix obtained from ADP algorithm             

K = [-1.0000 20.6532 -1.0202 2.3935] also gives better performance similar to LQR based control 

response. The only difference is that there will be a slight change in overshoot and settling time. This 

change has been plotted in the      figure 15. 

D. Swing-Up and Balance Control 

The state feedback gain matrix K value obtained from LQR and ADP methods are used in swing-up 

and balance control Simulink block shown in figure 8 and their performances are compared here. 

1) Initial Stabilizing K Matrix Response 

The output for initial stabilizing K matrix used in ADP algorithm(K = [-2 80 -4 40]) is shown in figure 

16, 17 and 18.   

In figure 16, the actual rotary arm angle takes more seconds to track the set point rotary arm 

angle. In figure 17, the pendulum angle output has worst performance, more oscillations and very 

slow response. As this control gain has worst performance, it takes more pendulum energy to make 

the system stable. This control gain is given as initial stabilizing gain in the ADP algorithm to increase 

the performance. The updated K matrix from ADP algorithm and its output performances were shown 

in the figures 19, 20 and 21. The outputs for initial stabilizing K matrix are shown in below figures 16 

to 18.  
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From figure 16, 17, 18, it is inferred that the initial stabilizing K matrix produces worst performance 

with more settling time and oscillations. Here the pendulum takes around 7 seconds to settle and also 

it consumes more energy for settling. Thus, using this K matrix value for controlling the rotary inverted 

pendulum system is not advisable. 

2)    ADP Based K Matrix Response 

       The output for updated K matrix (K = [-1.0000   20.6532   -1.0202    2.3935]) obtained by ADP 

algorithm is shown in figure 19, 20 and 21.   

 

 

 

Fig. 16 Desired vs System Rotary Arm Angle for Initial Stabilizing K Matrix Used in 

ADP algorithm 

Fig. 17 Pendulum Angle for Initial Stabilizing K Matrix Used in ADP Algorithm 

 

Fig. 18 Pendulum Energy for Initial Stabilizing K Matrix Used in ADP Algorithm 
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        From figure 19, 20, 21, it is inferred that the ADP based K matrix produces best performance with 

less settling but with more overshoot. It also consumes less pendulum energy to settle the pendulum 

at the right position. When compared with initial stabilizing K matrix response, the updated K matrix 

obtained from ADP algorithm has smooth performance and quicker response but with slightly more 

overshoot. Thus, using the K matrix obtained from ADP algorithm, it is possible to obtain best 

performance results for QUBE-Servo 2 rotary inverted pendulum system. 

 

3)    LQR Based K Matrix Response 

       The output for updated K matrix (K = [-1.0000   35.0244   -1.4474    3.0909]) obtained by LQR is 

shown in figure 22, 23 and 24.   

 

 

 

 

 

 

 

Fig. 19 Desired vs System Rotary Arm Angle for K Matrix 

Updated by ADP 

Fig. 20 Pendulum Angle for K Matrix Updated by ADP 

Fig. 21 Pendulum Energy for K Matrix Updated by ADP 
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        The outputs obtained using LQR gain has similar performance when compared to updated K 

matrix obtained from ADP algorithm. ADP based output has less settling time and slightly more 

overshoot when compared with LQR based output. From the figures 16 to 24, it is inferred that the 

initial stabilizing K matrix used in ADP algorithm has worst performance compared to other two K 

matrix values.  

        The rotary arm angle of the plant will track the desired angle very slowly in figure 16 (initial 

stabilizing K matrix), whereas it tracks very quickly in figure 19 (updated ADP K matrix). The 

performance of LQR based K matrix is little slower than the updated ADP K matrix.  

         Comparing the pendulum angle responses for three different K matrix, it is confirmed that the 

updated K matrix obtained by ADP algorithm settles very quickly but has higher peak overshoot when 

compared with the responses obtained from LQR based K matrix.  

VI. CONCLUSION 

Thus, the ADP algorithm is trained effectively using MATLAB-SIMULINK and the updated gain 

matrix K is used to obtain balance control. The simulation results presented shows that the ADP based 

LQR control gives better performance and the output settles little quickly than conventional LQR 

controller. The future scope is to implement the ADP based LQR controller in real time system to 

achieve better performance and provide real time disturbances to analyse the efficiency of ADP based 

LQR controller in real time. 

 

Fig. 22 Desired vs System Rotary Arm Angle for K Matrix 

Obtained by LQR 

Fig. 23 Pendulum Angle for K Matrix Obtained by LQR 

Fig. 24 Pendulum Energy for K Matrix Obtained by LQR 
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