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Abstract-  

The inverted pendulum is a standard benchmark control problem and numerous control algorithms have evolved 

over ages. LQR is an optimal control method which is used to control the system. One of the important challenges in the 

design of LQR in real time applications is the optimal choice of error and control weighting matrices (Q and R), which play a 

vital role in determining the performance and optimality of the controller. Commonly, trial and error approach are employed 

for selecting the weighting matrices, which not only burdens the design but also results in non-optimal response. Hence, to 

choose the elements of Q and R matrices optimally, optimization algorithms are used for selecting the most optimal Q and 

R matrices which also reduces the performance index of the system. However, stability is only a bare minimum requirement 

in the system design. Ensuring optimality guarantees the stability of the nonlinear system. The main objective of this project 

is to design a linear quadratic regulator (LQR) using various optimization algorithms like Artificial Bees Colony (ABC) and 

Particle Swarm Optimization (PSO) for the inverted pendulum system. The results show that Particle swarm optimization 

algorithm is efficient in tuning the parameters to give the optimum response. 

Keywords- Inverted Pendulum, optimal control, Linear Quadratic Regulator, Artificial bees’ colony (ABC), Particle Swarm 

Optimization (PSO) 

I. INTRODUCTION 

 

In the real time all the systems are affected by various uncertainties due to modelling errors, 

external disturbances and parameter variations. Controlling such a dynamical system is difficult and 

there arises the need for optimal controllers. These controllers will achieve the desired performance 

of system despite uncertainties. The inverted pendulum is a standard benchmark control problem and 

for the control of which numerous control algorithms have evolved over the ages. Linear quadratic 

regulator (LQR) is one among the control algorithm. One of the challenging problems in the design of 

LQR is the choice of Q and R matrices. Conventionally, the weights of an LQR controller are chosen 

based on a trial and error approach to determine the optimum state feedback controller gains. 

However, it is often time consuming and tedious to tune the controller gains via a trial and error 

method. An Artificial Bee Colony (ABC) algorithm and particle swarm optimization algorithm (PSO) 

was used to minimize the performance index or cost function by selecting the optimal weighting 

matrices to overcome LQR design difficulties for the given system. 

mailto:sreepradha.control@gmail.com
mailto:gsr.ice@psgtech.ac.in


Nat. Volatiles & Essent. Oils, 2021; 8(5): 3242-3256 

 

3243 
 

Baris et al (2017) presented a Linear Quadratic Optimal controller design for an inverted 

pendulum on a cart using Artificial bees’ colony (ABC) algorithm[1].  

 

Vinod Kumar E at al (2016) presented a Algebraic Riccati equation based Q and R matrices 

selection algorithm for optimal LQR applied to tracking control of 3rd order magnetic levitation 

system[4]. 

The paper is organised as the section 2 deals with the description and modelling of inverted 

pendulum on moving cart. Section 3 explains the design of LQR control using optimization algorithm. 

Section 4 in detail explains the simulation results. Section 5 addresses the conclusion and the ways in 

which the work can be extended in future. 

II. INVERTED PENDULUM SYSTEM 

The inverted pendulum is a nonlinear, unstable, under actuated system. The system has two 

degrees of motion with a single input such systems are difficult to control. The output is the linear 

motion of the cart and the angular motion of the pendulum. Because of this nature of the system, 

they are selected for studying various modern control problems. The schematic representation of the 

inverted pendulum on a moving cart system is shown in Fig. 1 

 

Fig. 1 Cart-Inverted Pendulum System 

The cart-inverted pendulum system consists of a pendulum of mass and length attached to 

the cart of mass and the cart in turn is attached to a motor that drives the cart along the horizontal 

track by means of gear arrangement. The mass of the cart is given by the sum of the cart mass and the 

mass of the additional weights that are added to balance the weight of the pendulum attached to the 

cart. The movement of the cart is constrained only in horizontal direction whereas the pendulum can 

rotate in the x-y plane[6].  

Hence the system can be represented by the two state variables namely, the horizontal 

displacement of the cart and the angular displacement of the pendulum. The coulomb’s frictional 

force exerted by the cart pinion arrangement and the force on the cart due to pendulum’s action are 

assumed to be negligible for the modelling of the system. The cartesian co-ordinates of the cart-

inverted pendulum is represented as shown in Fig 2. 
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Fig. 2 Cartesian co-ordinates of Cart-Inverted Pendulum System 

 

The global frames are fixed as 𝑥 − 𝑦 and the position of the pendulum with respect to the 

global frame is given by 𝑥𝑝 − 𝑦𝑝  corresponding to the 𝑥 and 𝑦 global reference frame. The 

mathematical model of the setup shown in Figure 2 is obtained by applying the Euler Lagrangian 

energy equation. 

A. Euler – Lagrangian formulation   

The Lagrangian formulation is based on the differentiation of the energy terms with respect 

to the system’s state variables and time [6]. When the complexity of the system increases, the 

Lagrangian method becomes relatively simpler to use. Lagrangian method is based on the following 

two generalized equations: one for linear motions and the other for rotational motions. Because of 

the effectiveness, the Lagrangian method is used for modelling the complex systems which have 

translational as well as rotational motions. The Lagrangian is defined as 

𝐿 = 𝐾 − 𝑃                                                           (1) 

Where 𝐿 is the Lagrangian, 𝐾 is the total kinetic energy of the system, 𝑃 is the total potential 

energy of the system. The equations governing the Lagrangian method is given by    

𝐹𝑖 =
𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑥̇𝑖
−

𝜕𝐿

𝜕𝑥𝑖
                                                     (2) 

𝑇𝑖 =
𝑑

𝑑𝑡

𝜕𝐿

𝜕𝜃̇𝑖
−

𝜕𝐿

𝜕𝜃𝑖
                                                             (3) 

Where 𝐹𝑖  is the summation of all external forces for a translational motion, 𝑇𝑖  is the 

summation of all external forces for rotational motion, 𝜃𝑖 and 𝑥𝑖  are the system variables. Hence in 

order to get the equations of motion for the system, the energy equations of the system are derived 

first and then the Lagrangian is differentiated according to Equations (2) and (3). 

Now, for the cart-inverted pendulum system, the linear motion is given by cart position 𝑥𝑐 

and the angular motion is given by pendulum position 𝛼. The Euler-Lagrangian for the cart-inverted 

pendulum system is given by 

𝐹𝑖 =
𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑥̇𝑐
−

𝜕𝐿

𝜕𝑥𝑐
                                                      (4) 

𝑇𝑖 =
𝑑

𝑑𝑡

𝜕𝐿

𝜕𝛼̇𝑖
−

𝜕𝐿

𝜕𝛼𝑖
                                                       (5) 
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Where 𝐹𝑖 and 𝑇𝑖 are the force applied on the 𝑥𝑐 and 𝛼 co-ordinate respectively. These forces 

are given by the below expression 

𝐹𝑖 = 𝐹𝑐(𝑡) − 𝐵𝑒𝑞𝑥̇𝑐                                                  (6) 

𝑇𝑖 = −𝐵𝑝𝛼̇(𝑡)                                                              (7) 

The cart always moves in the horizontal direction and as such, doesn’t have any vertical 

displacement. So the total potential energy is represented by the pendulum’s potential energy given 

by 

𝑃 = 𝑀𝑝𝑔𝑙𝑝 cos(𝛼(𝑡))                                              (8) 

Kinetic energy gives the measure of total amount of energy in the system due to motion. The 

total kinetic energy of the cart-inverted pendulum system is given bym 

𝐾 = 𝐾𝑐 + 𝐾𝑝                                                                (9) 

Where 𝐾𝑐 and 𝐾𝑝 are the sum of the translational and rotational kinetic energies of the cart 

and the pendulum respectively.  The translational and the rotational kinetic energy of the cart is given 

as 

𝐾𝑐𝑡 =
1

2
𝑀𝑥̇𝑐

2                                                           (10) 

𝐾𝑐𝑟 =
1

2

𝐽𝑚𝑘𝑔
2𝑥̇𝑐

2

𝑟𝑚𝑝
2                                                      (11) 

Where 𝐽𝑚  is the rotor moment of inertia, 𝑘𝑔  is the gear box ratio, 𝑟𝑚𝑝 is the motor pinion 

radius. Therefore, the total kinetic energy of the cart can be written as 

𝐾𝑐 =
1

2
𝑀𝑐𝑥̇𝑐

2                                                         (12) 

𝑀𝑐 = 𝑀 +
𝐽𝑚𝑘𝑔

2

𝑟𝑚𝑝
2                                                    (13) 

The total kinetic energy exerted by the pendulum is given by the sum of the translational and 

the rotational kinetic energy of the pendulum which are given by 

𝐾𝑝 = 𝐾𝑝𝑡 + 𝐾𝑝𝑟                                                   (14) 

𝐾𝑝𝑡 =
1

2
𝑀𝑝𝑟̇𝑝

2       (15) 

𝐾𝑝𝑟 =
1

2
𝐼𝑝𝛼̇2(𝑡)       (16) 

Where 𝑟̇𝑝
2 = 𝑥̇𝑝

2 + 𝑦̇𝑝
2  and from Figure 2 𝑥̇𝑝 and  𝑦̇𝑝 can be expressed as 

𝑥̇𝑝 = 𝑥̇𝑐 − 𝑙𝑝 cos(𝛼(𝑡)) 𝛼(𝑡)̇      (17) 

𝑦̇𝑝 = −𝑙𝑝 sin(𝛼(𝑡)) 𝛼̇(𝑡)      (18) 
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Thus, by substituting the above equations, the total kinetic energy of the system is given by 

𝐾 =
1

2
(𝑀𝑐 + 𝑀𝑝)𝑥̇𝑐

2(𝑡) − 𝑀𝑝𝑙𝑝 cos(𝛼(𝑡)) 𝛼̇(𝑡)𝑥̇𝑐(𝑡) +
1

2
(𝐼𝑝 + 𝑀𝑝𝐼𝑝

2)𝛼̇2(𝑡)    (19) 

The Lagrangian is thus expressed as shown below 

𝐿 =
1

2
(𝑀𝑐 + 𝑀𝑝)𝑥̇𝑐

2(𝑡) − 𝑀𝑝𝑙𝑝 cos(𝛼(𝑡)) 𝛼̇(𝑡)𝑥̇𝑐(𝑡) +
1

2
(𝐼𝑝 + 𝑀𝑝𝐼𝑝

2)𝛼̇2(𝑡) − 𝑃            

    (20) 

Upon substituting the obtained Lagrangian (20) in (4) and (5), the nonlinear equations of 

motion are obtained as 

𝐹𝑐(𝑡) = (𝑀𝑐 + 𝑀𝑝)𝑥̈𝑐(𝑡) + 𝐵𝑒𝑞𝑥̇𝑐(𝑡) + 𝑀𝑝𝑙𝑝 cos(𝛼(𝑡)) 𝛼̈(𝑡) − 𝑀𝑝𝑙𝑝sin (𝛼(𝑡))𝛼̇2(𝑡)       (21) 

And  

−𝑀𝑝𝑙𝑝 cos(𝛼(𝑡)) 𝛼̇(𝑡)𝑥̈𝑐(𝑡) + (𝐼𝑝 + 𝑀𝑝𝑙𝑝
2)𝛼̈(𝑡) + 𝐵𝑝𝛼̇(𝑡) − 𝑀𝑝𝑔𝑙𝑝 sin(𝛼(𝑡)) = 0              

(22) 

B. Model linearization    

The nonlinear model is linearized around the equilibrium point i.e. upright position such that sin(𝛼) ≅ 

𝛼,cos (𝛼) ≅ 1. The linearized model is written in the state space form as 

𝑋̇ = 𝐴𝑋 + 𝐵𝑈          (23) 

𝑌 = 𝐶𝑋                                             (24) 

 

Where X=[𝑥𝑐  𝛼 𝑥̇𝑐 𝛼̇]𝑇 , 𝑈 = 𝑉 𝑎𝑛𝑑 𝑌 =  [𝑥𝑐  𝛼 𝑥̇𝑐 𝛼̇]𝑇  

The state space model of the system is thus obtained as 

𝐴 =  

[
 
 
 
 
 

0 0
0 0

      
1 0
0 1

0
𝑔𝑀𝑝

2𝑙𝑝
2

(𝑀𝑝+𝑀𝑐)𝐼𝑝+𝑀𝑐𝑀𝑝𝑙𝑝
2

0
𝑀𝑝𝑔𝑙𝑝(𝑀𝑝+𝑀𝑐)

(𝑀𝑝+𝑀𝑐)𝐼𝑝+𝑀𝑐𝑀𝑝𝑙𝑝
2

      

−𝐵𝑒𝑞(𝑀𝑝𝑙𝑝
2

(𝑀𝑝+𝑀𝑐)𝐼𝑝+𝑀𝑐𝑀𝑝𝑙𝑝
2)

−𝑀𝑝𝑙𝑝𝐵𝑝

(𝑀𝑝+𝑀𝑐)𝐼𝑝+𝑀𝑐𝑀𝑝𝑙𝑝
2

−𝑀𝑝𝑙𝑝𝐵𝑒𝑞

(𝑀𝑝+𝑀𝑐)𝐼𝑝+𝑀𝑐𝑀𝑝𝑙𝑝
2

−(𝑀𝑝+𝑀𝑐)𝐵𝑝

(𝑀𝑝+𝑀𝑐)𝐼𝑝+𝑀𝑐𝑀𝑝𝑙𝑝
2]
 
 
 
 
 

    

       (25) 

𝐵 =

[
 
 
 
 
 

0
0

𝐼𝑝+𝑀𝑝𝑙𝑝
2

(𝑀𝑝+𝑀𝑐)𝐼𝑝+𝑀𝑐𝑀𝑝𝑙𝑝
2

𝑀𝑝𝑙𝑝

(𝑀𝑝+𝑀𝑐)𝐼𝑝+𝑀𝑐𝑀𝑝𝑙𝑝
2]
 
 
 
 
 

   (26) 

Linearization is done at the equilibrium point and the state space model of the system is 

obtained. This model represents the system only within an operating region and whenever the system 

states exceeds the maximum boundary, the model will not be able to accommodate them. The state 
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and the control input values tend to increase exponentially. Hence, it is important to note the 

operating region and the conditions that are chosen for testing should fall within the operating rang 

else the system will become unstable.  

Hence care must be taken while selecting the initial conditions for the system. Though the 

region of operation is small, the state space model addresses the control problem more effectively 

within the region. The nonlinear equations of motion can be directly used for analysing the system. 

This could be close to the actual system as these include the nonlinearity in the process equations. 

Analysis made from such system models will be closer to the actual system.  

The cart-pendulum system parameters that are used to obtain the state space model are 

shown in Table 1 [13]. These system parameters governing the cart-pendulum system are substituted 

in the equations (25) and (26) to get the state space model. 

By substituting the parameters given in Table 1 in Equations (25) and (26), the state space 

model of the system is obtained as shown below:  

 

[

𝑥̇𝑐

𝛼̇
𝑥̈𝑐

𝛼̈

] = [

0           0
0           0

                            
1           0
0           1

0 0.8703
0 46.2580

     
−4.8987 −0.0094
−21.2169 −0.5012

] [

𝑥𝑐

𝛼
𝑥̇𝑐

𝛼̇

] + [

0
0

0.9072
3.9291

]𝑢    (27) 

𝑦 = [
1 0
0 1

    
0 0
0 0

] [

𝑥𝑐

𝛼
𝑥̇𝑐

𝛼̇

]    (28) 

Table 1 System Parameters of Cart-inverted pendulum system 

Symbol Parameter Value 

𝑀𝑐 Mass of cart 1.0731 𝐾𝑔 

𝑀𝑝 Pendulum 

mass 

0.127 𝐾𝑔 

𝑙𝑝 Pendulum 

length from 

centre to C.G 

0.1778 m 

𝑙𝑝 Pendulum 

moment of 

inertia 

1.2 × 10−3𝐾𝑔𝑚2 

𝑔 Acceleration 

due to gravity 

9.81 𝑚/𝑠2 

𝐵𝑝 Viscous 

damping co-

efficient at 

pendulum 

axis 

0.0024 𝑁𝑚𝑠/𝑟𝑎𝑑 

𝐵𝑒𝑞 Viscous 

damping co-

5.4 𝑁𝑚𝑠/𝑟𝑎𝑑 
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efficient of 

motor pinion 

 

C. Stability of cart-pendulum system  

The cart-pendulum system is an unstable system in open loop and this can be verified with 

the pole zero plots for the obtained state space model. The pole zero plots for the system is shown in 

Figure 3. As seen from the pole zero map, the poles of the obtained state space model are located at 

0, 6.4432, -7.5831 and -4.2600.  

This implies that the system inherently is not stable and thus needs a proper controller to be 

designed that can bring all the closed loop poles to the left half plane making the system stable. The 

need for proper controller design is thus clearly visible and that the system would be unstable in open 

loop. 

 

Fig. 3 Pole zero map of the cart-pendulum system model 

Hence the design of controller’s gains significance for such systems. If the controllers 

designed, works well for the controlling of the cart-pendulum system, then they can be implemented 

in a wide variety of real time applications. The controllers designed for such systems find their 

application in aerospace systems which have much more complex and unstable systems. Also, they 

can be used to control similar under actuated systems as well. 

III. CONTROLLER DESIGN 

A. Linear quadratic regulator 

 The basic idea of linear Quadratic Regulator (LQR) controller is to solve the weighting matrices 

selection problem. One of the important challenges in the design of LQR for real time applications is 

the optimal choice of state matrix (Q) and input weighting matrix (R), which play a vital role in 

determining the performance and optimality of the controller. Commonly, trial and error approach 

are employed for selecting the weighting matrices, which is not only tedious but also time consuming 

and results in non-optimal response. 

 Hence, to choose the elements of Q and R matrices optimally, an optimization algorithm is 

formulated and applied for minimizing the performance index or the cost function. Moreover, by 

minimizing a quadratic cost function which consists of two penality matrices (Q and R), LQR yields an 

optimal response between the control input and speed of response. Hence, the LQR techniques have 
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been successfully applied to a large number of complex systems such as vibration control system, fuel 

cell system and aircraft[3]. 

 In order to obtain the Q and R matrices optimally, iteration is performed using optimization 

algorithms. The value of Q and R for which the cost function is minimum is considered to be the 

optimal values of the matrices Q and R. The block diagram for the LQR controller using various 

optimization algorithms like artificial bee colony algorithm and particle swarm optimization algorithm 

is shown in fig 4. 

 

Fig. 4 Block diagram of LQR controller for cart pendulum system 

B. Design of LQR control 

 The LQR control is a powerful technique for designing controllers for complex systems that 

have stringent performance requirements and it seeks to find the optimal controller that minimizes a 

given cost function. The cost function is parameterized by two matrices, Q and R which weight the 

state vector and the system input respectively. LQR method is based on the state-space model and it 

tries to obtain the optimal control input by solving the algebraic riccatti equation[5]. 

Consider a linear time invariant system (LTI),  

 𝑥̇ = 𝐴 𝑥(𝑡) + 𝐵 𝑢(𝑡)   (29) 

 𝑦 = 𝐶 𝑥(𝑡)    (30) 

 Where x(t) is the state vector and u(t) is the input vector, determine the matrix   

𝐾 = 𝑅𝑛∗𝑚 such that the static, full state feedback control law, 

 𝑢 = −𝐾𝑥(𝑡)    (31) 

 𝐾 = 𝑅−1𝐵𝑇𝑃    (32) 

Satisfies the following criteria, 

a) the closed-loop system is asymptotically stable 

b) the quadratic performance function and the cost function A 

𝐽(𝐾) =  
1

2
∫ [𝑥𝑇(𝑡) 𝑄(𝑡) + 𝑢𝑇(𝑡) 𝑅 𝑢(𝑡)]𝑑𝑡

∞

0
           (33) 

 is minimized. Q is a nonnegative definite matrix that penalizes the departure of system states 

from the equilibrium, and R is a positive definite matrix that penalizes the control input. 
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 The following are the steps to design LQR control where Q and R values are selected by 

iteration method: 

Step:1: Solve the matrix Algebraic Riccati Equation (ARE) 

−𝑃𝐴 − 𝐴𝑇𝑃 − 𝑄 + 𝑃𝐵𝑅−1𝐵𝑇𝑃 = 0  (34) 

Step:2: Determine the optimal state 𝑥∗(𝑡) from 

𝑥̇∗(𝑡) = [𝐴 − 𝐵𝑅−1𝐵𝑇𝑃]𝑥∗(𝑡)   (35) 

Step:3: Obtain the optimal control 𝑢∗(𝑡) from  

𝑢∗(𝑡) =  −𝑅−1𝐵𝑇𝑃𝑥∗(𝑡)    (36) 

Step:4: Obtain the optimal performance index from  

 𝐽∗ =
1

2
𝑥∗𝑇

(𝑡)𝑃𝑥(𝑡)   (37)  

Step:5: Iterate the Q and R values from 0 to n, where n represents the number of iterations to be 

performed till the performance index or cost function gets minimized. 

 The weighting matrices Q and R are important components of an LQR optimization process. 

The composition of Q and R elements has great influences on system performance. The designer need 

not to worry about the choice of Q and R values as it can be resolved using iteration method[4]. 

C. Artificial bee’s colony algorithm (ABC) 

 The ABC algorithm is an intelligent search technique used to find solutions to optimization 

problems. It was proposed by Karaboğa, inspired by the behavior of honey bee swarms that find a 

food source and share the knowledge of this food source with others. The ABC algorithm divides the 

artificial bees in a bee colony into three groups as employed bees, onlooker bees, and scout bees. The 

employed bees search the food sources in the field and share the information of food sources with 

other bees.  

 Each employed bee is responsible for only one food source. The onlooker bees wait in the 

hive and find a food source according to information provided by the employed bees. An employed 

bee turns into a scout bee after draining the food source and starts to search for new food sources 

around the hive. The position of a food source means a candidate solution for the corresponding 

problem. The value of the objective function represented by the nectar amount determines the quality 

of solution. The algorithm starts with random distribution of employed bees in the search field and 

production of the initial solutions. For i = 1, 2…, SN (SN is the number of source), each source is a D-

dimensional vector. The position of the ith food source in the search space is represented by 𝑋𝑖 =

[𝑋𝑖1 𝑋𝑖2 … . 𝑋𝑖]
𝑇.  

 Each employed bee searches and produces a modified food source position by the following 

equation: 

 𝑥𝑖𝑗
′ = 𝑥𝑖𝑗 + 𝑟𝑖𝑗(𝑥𝑖𝑗 − 𝑥𝑘𝑗)  (38) 
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where j ∈ 1,2, ···, D and k ∈ 1, 2…, SN are randomly chosen indices and k ≠ i. The parameter 𝑟𝑖𝑗 is also 

a real random number in the domain [−1,1]. After receiving the food source information, the onlooker 

bee goes to the food source region at 𝑋𝑖  based on probability 𝑃𝑖 defined by the following equation 

 𝑃𝑖 =
𝑓𝑖𝑡𝑖

∑ 𝑓𝑖𝑡𝑛
𝑆𝑁
𝑛=1

    (39) 

Fitness value 𝑓𝑖𝑡𝑖 is calculated by using the following equation: 

𝑓𝑖𝑡𝑖 = {

1

1+𝑓(𝑋𝑖)
       𝑓(𝑋𝑖) ≥ 0

1 + |𝑓(𝑋𝑖|       𝑓(𝑋𝑖) < 0
          (40) 

Where 𝑓(𝑋𝑖) is the objective function of source 𝑋𝑖  to be minimized. If the new fitness value is 

better than the previous fitness values, than the bee moves to this new food source. The source 

information is shared with the onlooker bees after the process is completed by all employed bees and 

each onlooker bee selects a food source by the probability given above. Each bee searches a better 

food source until the appropriate solution or maximum iteration number is reached[1].  

 

Fig. 5 Flowchart of ABC algorithm 

D. Particle swarm optimization (PSO) 

 The PSO algorithm is a population-based heuristic search technique used to find solutions to 

optimization problems. It was developed by Kennedy and Eberhart, inspired by the social behavior of 

bird and fish swarms. The PSO algorithm begins by creating an initial population (swarm) consisting of 

randomly generated particles within an initialization region. Random position and velocity assigned 

particles search the optimum solution by navigating in the problem space. The position of each particle 

corresponds to a candidate solution of the optimization problem represented by objective function f.  

 The fitness of each particle is calculated according to the objective function f and the best 

position (pbest) ever visited by that particle is determined. After the determination of the pbest value 
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of each particle in the population, the best position ever visited by any particle (qbest) is determined. 

The velocities and the positions of the particles are calculated by Eqs. (41) and (42), respectively:  

𝑣𝑖𝑗
𝑘+1 = 𝑤. 𝑣𝑖𝑗

𝑘 + 𝑐1. 𝑟1. (𝑝𝑏𝑒𝑠𝑡𝑖𝑗
𝑘 − 𝑥𝑖𝑗

𝑘 ) + 𝑐2. 𝑟2. (𝑔𝑏𝑒𝑠𝑡𝑖𝑗
𝑘 − 𝑥𝑖𝑗

𝑘 )                        

 (41) 

 𝑥𝑖𝑗
𝑘+1 = 𝑥𝑖𝑗

𝑘 + 𝑣𝑖𝑗
𝑘+1         (42) 

 In these equations,  𝑐1  and 𝑐2  are the learning factors and w is the inertia weight. The 

learning factor leads the movement of a particle according to its own experience and the experience 

of the other particles in the swarm. The inertia weight adjusts the extent of the search area. A small 

inertia weight enables the local search while a large inertia weight allows the global search. After the 

update, the fitness of each particle in the new population is recalculated. This process is repeated until 

the appropriate solution or maximum iteration number is reached.  

From every cycle of the optimization algorithms (ABC and PSO), new 𝑄 and 𝑅 matrices are updated 

and a new feedback gain matrix 𝐾 is obtained in the following way: 

• Solving the algebraic Ricatti equation given in Equation 34 for 𝑃 where 𝐴 and 𝐵 are given 

above.  

• 𝑄 and 𝑅 are updated by the ABC and PSO algorithms.  

• Finding the gain matrix using Equation 32. 

 

Fig. 6 Flowchart of PSO algorithm 

 

IV.RESULTS AND DISCUSSION 

 

A. Open loop response of the inverted pendulum  

The fig 7 shows the open loop response of the inverted pendulum. From response, it is clear 

that the system is unstable since the output is bounded.  
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Fig. 7 Step response of open loop system  

B. Closed loop response of the inverted pendulum 

 

Fig. 8 Step response of the closed loop system 

The Fig. 8 shows that the closed loop response of the inverted pendulum system and it can be seen 

from the figure that it has more overshoot in both pendulum angle and the cart position. 

C. Response of the inverted pendulum system using LQR control 

 

Fig. 9 Step response with LQR control 

From the fig. 9 shows that the Q and R values are given (Q=C’*C and R=1). The cart position and 

pendulum angle settle to a desired value but the settling time and rise time are more. 

D. Response of the LQR control using optimization algorithms 

 

Fig. 10 Step response of LQR control for cart position 
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 The step response of the inverted pendulum with LQR control using optimization algorithm is 

shown in fig 5 and fig 6 where the Q and R values are obtained by iteration.  

  

  Here the overshoot and settling time is less in PSO tuned LQR for cart position and pendulum 

angle of the inverted pendulum than in the trial and error approach and ABC tuned LQR. The selected 

weighting matrices for the trial and error approach are shown in Equation 4.1. 

 𝑄 = [

0.5 0
0 5.5

   
0 0
0 0

0 0
0 0

          
0 0
0 0

], R=0.0003  (43) 

 By solving Equation 34 and 32 for the system matrices of the inverted pendulum system, the 

closed loop optimal control gain is obtained as in Equation 44. 

K = [-40.8248 184.9692 -43.7508 18.1548]  (44) 

 The selected weighting matrices for the ABC tuned LQR are shown in Equation 45. 

𝑄 = 𝑑𝑖𝑎𝑔([625.8682 0.0400 0.0400 0.8782]), R=1 (45) 

 The parameters of the ABC algorithm are set in the range [0.1 100], colony size=20 and max 

cycle=100.  

 By solving Equation 34 and 32 for the system matrices of the inverted pendulum system, the 

closed loop optimal control gain is obtained as in Equation 46 

K = [-6.7287 -7.6433 24.6789 4.7350]   (46) 

 The selected weighting matrices for the PSO tuned LQR are shown in Equation 47. 

𝑄 =  diag([64.059 0.068 265.428 1.713],R=0.3883 (47) 

 The parameters of the PSO algorithm are population size = 100, Number of Iterations = 100, 

velocity constant c1=2, velocity constant c2 = 2. By solving Equation 34 and 32 for the system matrices 

of the inverted pendulum system, the closed loop optimal control gain is obtained as in Equation 48. 

K = [-12.8442 114.8787 -36.7504 16.9963]  (48) 

 

Fig. 11 Step response of LQR control for pendulum angle 
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Table 2 Comparative analysis – Step response of LQR control using trial and error, ABC tuned LQR 

and PSO tuned LQR. 

 

V CONCLUSION 

In this paper a Linear Quadratic Regulator control using optimization algorithms has been 

introduced for the inverted pendulum system. The choice of weighting matrices Q and R plays a major 

role when cost function or performance index is taken into account. Generally, selecting matrices is 

managed by the trial and error approach and is merely a time-consuming process.  

To avoid the conventional trial and error method, an LQR controller is designed using the ABC 

and PSO algorithms and to determine the weighting matrices to overcome the LQR design difficulties. 

These methods reduce the time required to select the weighting matrices which is being chosen from 

user’s previous experience.  

The value of Q and R is selected for which it results in minimum cost function. The iterations 

will run for ‘n’ number of times till the performance index becomes minimum. This project can be 

extended for discrete time nonlinear systems as a future work. As mentioned earlier, there are many 

types of optimization algorithms which can be selected based on the requirement or constraints. 
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