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ABSTRACT 

The determination of the stress and the displacement fields in the vicinity of a stress-free Griffith crack is reduced to the 

solution of Fredholm integral equation of second kind by using Fourier transform, finite and integral. The solution of 

Fredholm integral equation is obtained by the method of expanding the unknown function g() in decreasing powers of a-

the half width of the strip. The expression of stress intensity factor, crack shape and the maximum shearing stress at (x,y) 

in the strip are presented analytically for two types of point forces. 

 

Introduction 

The problem of exterior crack in infinite isotropic homogeneous medium has been solved by 

Lowengrub [1] when crack was opened by pressures applied at crack faces only. He got the solution 

in closed form. However, there are only few problems of crack (s) in a finite strip. The problem of an 

interior crack opened by pressure at crack faces has been solved by Sneddon and Srivastava [2], who 

reduced the problem to dual integral equations whose solution. was given in the form of Fredholm 

integral equation by the method of [3]. 

The problem of exterior crack in a stress free strip has physical importance as one can 

perform the experiments to determine the stress field or crack shape. Therefore, the problem 

solved in the present paper is of physical importance. 

of our concern here is the problem of crack occupying the space y=0, c≤AxA≤ in the xstrip [-

a,a] x(-∞,∞), with edges stress free and the crack axis normal to edges. x-axis is 

x axis and y-axis is normal to x-axis. The boundary condition of the problem are  

                                                       𝜎𝑥𝑦 = 𝜎𝑥𝑦(±𝑎, 𝑦)= 0,    0≤AyA<∞,        

 (1.1) 

                                                       𝜎𝑥𝑥(±𝑎, 𝑦)= 0,    0≤AyA<∞,         (1.2) 

                                                        𝜎𝑥𝑦(    𝑥, 0)= 0,    0≤AxA<𝑎,         (1.3) 

and the mixed boundary conditions 

                                                              𝑈𝑦(x,0) =  0,             0≤AxA<𝑐      (1.4) 

                                                              𝜎𝑦𝑦(x,0) = -Px,         c≤AxA<𝑎      (1.5) 



Nat. Volatiles & Essent. Oils, 2021; 8(5): 3377 - 3383 

3378 

 

where (𝑈𝑥 , 𝑈𝑦) and (𝜎𝑥𝑥, 𝜎𝑥𝑦,𝜎𝑦𝑦) are the components of displacement vector and of stress tensor, 

respectively.  Through out the analysis we checked that [4]. 

       𝑈𝑦(x,0)>0,             c<AxA≤ 𝑎                                            (1.6) 

Which means that the faces do not meet other than at crack tips. We followed the notation 

convention for transform as  

𝐹𝑐𝑠(𝑎𝑛,𝜉) = ∫ ∫ 𝑐𝑜𝑠𝑎𝑛𝑥𝐹(𝑥1𝑦) sin 𝜉𝑦 𝑑𝑥𝑑𝑦
∞

0

𝑎

0
, 

With 𝑎𝑛= n𝜋/a=nq. The plan of the paper is as follows : in next section we present the solution of 

the problem an reduce of Freehold integral equation of second kind. Section 3 Formulates the 

expressions for physical quantities in terms of the functions which is solution of Fredholm integral 

equation. Section 4 gives the solution of Fredholm integral equation. Section 5 presents some 

particular cases of loading. The physical quantities are calculated analytically for these different 

cases.    

 Formulation 

 The title problem is reduced to the displacement boundary value problem. The symmetry of 

geometry reduces the problem to first quadrant only. The solution of the problem  follows from that 

of Sneddol and Srivastava [3] and written as 

Ux (x,y) =   
2(1+𝜂)

𝑎𝐸
∑

𝑠𝑖𝑛 𝑎𝑛𝑥

 𝑎𝑛

∞
𝑛=1 [(1- 𝜂) 

𝜕2∅1

𝜕𝑦2 + 𝜂𝑎𝑛2∅1] + 
2(1+𝜂)

𝜋𝐸
∫

𝑐𝑜𝑠𝜉𝑦

𝜉2

∞

0
 

+[(1- 𝜂) 
𝜕2∅2

𝜕𝑥3 (𝜂 − 2) 
𝜕∅2

𝜕𝑥
]d 𝜉    

 (2.1) 

Uy (x,y) = 1/2𝑈𝑦𝑐(𝑜, 𝑦) + ∑ 𝑈𝑦𝑐
∞
𝑛=1 (𝑎𝑛, 𝑦)𝑐𝑜𝑠  𝑎𝑟𝑥 +

2(1+𝜂)

𝜋𝐸
∫

sin𝜉𝑦

𝜉

∞

0
 

           +[(1- 𝜂) 
𝜕2∅2

𝜕𝑥2 + 𝜂𝜉2∅2]𝑑𝜉,                                                     (2.2) 

with  

U𝑦𝑐 (𝑎𝑛,y)= 
2(1+𝜂)

𝑎𝐸𝑎𝑛2 [(1- 𝜂) 
𝜕3∅1

𝜕𝑦3 +( 𝜂 − 2) 
𝜕∅1

𝜕𝑦1
𝑎𝑛2]                            (2.3) 

and  

                                                                         ∅1 = 𝐴𝑛(1 + 𝑎𝑛𝑦)𝑒−𝑎𝑛𝑦,                                                     (2.4) 

                                                                         ∅2= A(𝜉)[cosh 𝜉𝑥 − tanh 𝜉 𝑎 sinh 𝜉𝑥]       

(2.5) 

Where {An} and A (𝜉) are arbitrary constants to be determined through the boundary conditions, E 

and 𝜂 are Young's modules and Poisson ratio of the medium of the strip respectively. We see from 

the assumptions of the solution (2.1)-(2.5) that the boundary conditions (1.1) and (1.3) are 

identically satisfied. The boundary (1.2) gives, after Fourier inversion as  

                                                            A(𝜉)  = - 
4

𝑎
cosh 𝜉𝑎 ∑ (−1)𝑛 𝑎𝑛

3𝐴𝑛

(𝑎𝑛
3+𝜉2)2

∞
𝑛=1 ,         

(2.6)  

and the mixed boundary conditions (1,4)-(1.5) give the following dual trigonometrically series 

relations 

                                                               
𝐴0

2
+ ∑ 𝐵𝑛𝑐𝑜𝑠∞

𝑛=1 𝑎𝑛𝑥 = 0,                0≤AxA<𝑐                         (2.7) 

                                                           ∑ 𝑎𝑛𝐵𝑛𝑐𝑜𝑠∞
𝑛=1 𝑎𝑛𝑥 = 𝑝(𝑥), 𝑐 < 𝑥 ≤ 𝑎,                                       (2.8) 

With 

𝐵𝑛 = 𝑎𝑛 An and 𝐴0 is a constant,  

The solution of the above dual series relations is obtained through the method of Parihar [5] for 

triple series relations and is given by 



Nat. Volatiles & Essent. Oils, 2021; 8(5): 3377 - 3383 

3379 

 

g(t) + 
4

𝜋𝑎2 ∫ 𝑔(𝑦)𝑘(𝑦, 𝑡)𝑑𝑦 = 𝑃(𝑡), 𝑐 < 𝑡 ≤ 𝑎,
𝑎

𝑐
   

 (2.9) 

P(t) = 2𝑞−1
cos (

𝑞𝑡

2
)

√(𝐺(𝑐,𝑡))
∫

sin (𝑞𝑥/2)√(𝐺(𝑐,𝑥)𝑝(𝑥)

𝐺(𝑥,𝑡)

𝑎

𝑐
                                   (2.10) 

  K(y,t) =  
cos (

𝑞𝑡

2
)

√(𝐺(𝑐,𝑡))
∫

sin (𝑞𝑥/2)√(𝐺(𝑐,𝑥)

𝐺(𝑥,𝑡)

𝑎

𝑐
 ∑ (−1)𝑛𝑎𝑛𝑠𝑖𝑛𝑎𝑛𝑦 ∫

𝑐𝑜𝑠ℎ 𝜉(𝑎−𝑥)𝑑𝜉

(𝑎𝑛
3+𝜉2)2 sinh 𝜉𝑎

,
∞

0
∞
𝑛=1  

(2.11) 

and                 G(x, t) = cos (qx)- cos (qt),                                                 (2.12) 

Where        g(t) and An are related by 

    An = 
1

𝑎𝑛
3 ∫ 𝑔(𝑡)sin (𝑎𝑛𝑡)

𝑎

𝑐
 𝑑𝑡,                                                   (2.13) 

      Ao = 𝑎𝑛
−1 ∫ 𝑡𝑔(𝑡)

𝑎

0
𝑑𝑡,     

 (2.14)  

and 

                                                                 ∫ 𝑔(𝑡)
𝑎

0
𝑑𝑡=0                                                                       (2.15) 

Physical Quantities  

 The important physical quantities are stress components 𝜎𝑥𝑥, 𝜎𝑥𝑦, 𝜎𝑦𝑦 at general point (x,y) 

In the neighbourhood of crack tip, are components of strees, and  of displacement written as [𝜎𝑥𝑥 

(x,0), 𝜎𝑥𝑦 (x,0), 𝜎𝑦𝑦(x,0)] and [ Ux (x,o), Uy (x,0)] respectively. The component Uy (x,0) gives shapes 

of the crack  while 𝜎𝑦𝑦 (x,0) is developed because of opening out of this crack. Therefore of 

importance are the following quantities. 

Crack Shape 

 We calculate the value Uy (x, o)from the equations (2.2), (2.6), (2.13)-(2.14) and given as 

Uy (x, 0) = 
2(1−𝜂2)

𝐸
∫ 𝑔(𝑡)𝑑𝑡,

𝑎

𝑥
 𝑐 < 𝑥 ≤ 𝑎,                                        (3.1) 

The equation (1.6) along with (3.1) gives  

∫ 𝑔(𝑡)𝑑𝑡 > 0 
𝑎

𝑥
 𝑐 < 𝑥 ≤ 𝑎                                                                (3.2) 

When ensures the non overlapping of the faces. g(t) is given by the equation (2.9).  

Normal Component of Stress 

We calculate 𝜎𝑦𝑦 (x, 0) through the value 

𝜎𝑦𝑦 (x, y) =  - 
2

𝑎
∫ 𝑔(𝑡) ∑ 𝑐𝑜𝑠𝑎𝑛𝑥 sin 𝑎𝑛𝑡(1 + 𝑎𝑛𝑦)−𝑎𝑛𝑦 4

𝑦
∫ 𝑐𝑜𝑠𝜉𝑦𝑐𝑜𝑠ℎ 𝜉𝑎

∞

0
 𝑛

𝑛=1
𝑎

𝑐
 

+ [cosh 𝜉𝑥 - sinh 𝜉𝑥 tan 𝜉𝑎] ∑ (−1)𝑛 𝑎𝑛𝜉2

(𝑎𝑛
2+𝜉2)

∞
𝑛=1 ∫ 𝑔(𝑦)𝑠𝑖𝑛𝑎𝑛𝑦 𝑑𝑦 𝑑𝜉

𝑎

𝑐
,                   

(3.3)  

By putting y= 0 and evaluating the value of series etc., and written as 

𝜎𝑦𝑦 (x, 0) =  - 
2

𝑎
∫

𝑔(𝑡) sin(𝑞𝑡)

𝐺(𝑥,𝑡)
+

𝑎

𝑐

4

𝜋𝑎2 ∫ ∫ 𝑔(𝑦){cos 𝜉(𝑎 − 𝑥)  
𝑎

𝑐

∞

0
𝑐𝑜𝑠𝑒𝑐ℎ 𝜉𝑎 

[y cosh  𝜉𝑦 sinh 𝜉 𝜋- 𝜋 sinh 𝜉𝑦 cosh 𝜉𝜋] d 𝜉} dy,                              (3.4) 

While the stress intensity factor is defined at 

                                                      𝐾𝑐 =lim
𝑥→𝑐

√(𝑐 − 𝑥)𝜎𝑦𝑦(𝑥, 𝑜)                                                         (3.5) 

 We see form the expression in equation (3.4) that it is the only first summand which will 

contribute to singularity of 𝜎𝑦𝑦(x, 0). There fore the second is not important in the evaluation of 

stress intensity factor. We see from the boundary condition only that 𝜎𝑦𝑦 (x,0) = 0 Hence the stress 

intensity factor corresponding to this streets component will be zero. 
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Crack Energy 

 The work done by p (x) in opening the crack Uy (x, 0) is given as 

    W = 
4(1−𝜂2)

𝜋𝑎𝐸
∫ 𝑝(𝑥) ∫ 𝑔(𝑡)𝑑𝑡,

𝑎

𝑥

𝑎

𝑐
        

(3.6) 

where g(t) is given by (2.9). The quantity which is important for yielding of the Medium is shearing 

stress and given by 

Maximum shearing stress 

     where 𝜏  (z)= 
1

2
(𝜎𝑦𝑦 − 𝜎𝑥𝑥) + i 𝜎𝑥𝑦       

(3.7) 

and      z =   x  + iy,        

(3.8)  

   𝜎𝑦𝑦 is given by (3.3) and the rest are defined as  

𝜎𝑥𝑥 = +
2

𝑎
∫ 𝑔(𝑡) ∑ cos 𝑎𝑛𝑥 𝑠𝑖𝑛𝑎𝑛𝑡∞

𝑛=1 (1 + 𝑎𝑛𝑦)𝑒−𝑎𝑛𝑦
𝑎

𝑐
−

4

𝜋
∫ 𝑐𝑜𝑠𝜉𝑦 cosh 𝜉𝑎[cosh 𝜉𝑥

∞

0
 

    -tan  𝜉𝑎 sinh 𝜉𝑥] ∑ (−1)𝑛∞
𝑛=1

𝑎𝑛𝜉2

𝑎𝑛
2+𝜉2  𝑑𝜉 ∫ 𝑔(𝑦)𝑠𝑖𝑛𝑎𝑛𝑦𝑑𝑦,

𝑎

𝑐
                                  (3.9) 

and  

𝜎𝑥𝑦 = 
4

𝜋
 ∫ 𝑔(𝑦)𝑑𝑦 ∫ 𝑠𝑖𝑛

∞

0
 𝜉𝑦

𝑎

𝑐
 cosh 𝜉𝑎 [sinh 𝜉𝑥 - tanh 𝑎 𝑐𝑜𝑠 𝜉𝑥] d𝜉 ∑ (−1)𝑛∞

𝑛=1  

     
𝑎𝑛 sin 𝑎𝑛𝑡𝜉2

(𝑎𝑛2+𝜉2)2         

(3.10) 

Solution of Freehold Integral Equation 

 First we interchange the order of integration and of summation and use 

                                                  ∑ (−1)𝑘∞
𝑘=1 =

cos 𝑘𝑥

𝑘2+𝑎2 = 
𝜋

2𝑎
. 

cosh 𝑎𝑥

sinh 𝑎𝜋
 - 

1

2𝑎2                                                (4.1) 

and then exponentials incoming functions into series of descending orders exponentials and 

evaluating the integrals we get 

                                    𝑥𝑚𝑒(𝑥, 𝑦) = ∑ ∑ [(𝑦 − 𝑎)∞
𝑙=0

∞
𝑚=0 ∑ 𝑑𝑟 + (𝑦 + 𝑎) ∑ 𝑑𝑟]12

𝑟=7
6
𝑛=1                          (4.2)  

with 

𝑑1 = 𝑑1
−2 (a, 2m, 21, -y),  𝑑2 = 𝑑2

−2 (2a, 2m, 21, -y), 

𝑑3 = 𝑑3
−2 (2a, 2m, 21, -y, -x),  𝑑4 = 𝑑4

−2 (3a, 2m, 21, y), 

𝑑5 = 𝑑5
−2 (4a, 2m, 21, y),  𝑑6 = 𝑑6

−2 (4a, 2m, 21, y-x), 

𝑑7 = 𝑑7
−2 (a, 2m, 21, y),  𝑑8 = 𝑑8

−2 (2a, 2m, 21, y), 

𝑑9 = 𝑑9
−2 (2a, 2m, 21, y, x),  𝑑10 = 𝑑4,  𝑑11= 𝑑5, 

𝑑12 = 𝑑12
2(4a, 2m, 2L,yx) 

                                   𝑑𝑗
2=  (𝑎1, 𝑎2,𝑎3, 𝑎4, 𝑎5),  (∑ 𝑎𝑟

5
𝑟=1 )2, j= 1, 2, -----12.                                  (4.3) 

Thus the evolution for kernel K (y, t) are given by 

K(y, t) = 
4

𝜋𝑎2 
cos (

𝑞𝑡

2
)

√𝐺(𝑐,𝑡)
[∑ ∑ < {(𝑦 − 𝑎)∞

𝑙=𝑜 (𝑑1 + 𝑑2 + 𝑑4 + 𝑑5)∞
𝑚=0 + (𝑦 + 𝑎)(𝑑7 + 𝑑8 − 𝑑10 − 𝑑11)} 

+  (y-a){𝐾1
𝑚𝑙(𝑦, 𝑡) + 𝐾2

𝑚𝑙(𝑦, 𝑡) + 𝐾3
𝑚𝑙(𝑦, 𝑡) − 𝐾4

𝑚𝑙(𝑦, 𝑡)}>],                                                        (4.3) 

Wher 

                                                𝐾𝑖
𝑚𝑙 = ∫

sin (𝑞𝑥/2)√(𝐺(𝑐,𝑥)𝑑3𝑖(𝑥,𝑦)𝑑𝑥

𝐺(𝑥,𝑡)

𝑎

𝑐
                                                        (4.4) 

i = 1, 2, 3, 4 

Now we assume the solution g(t) at 

                                                        g (t) = ∑ 𝑔𝑚
∞
𝑚=0 (𝑡)𝑎−𝑚−1                                                               (4.5) 
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We Substitute the value of g(t) from (4.5) and K(y,t) from (4.3) into (2.9) and comparing the 

coefficients of equal powers of {𝑎−𝑚−1} we get 

                                                   𝑔0(𝑡) = 2
cos(

𝑞𝑡

2
)

√(𝐺(𝑐,𝑡))

𝑝0(𝑡), 𝑔−1(𝑡) = 0                                                     (4.6) 

and the recurrence relation for m 

𝑔𝑚(𝑡)=
4

𝜋2

cos (
𝑞𝑡

2
)

√𝐺(𝑐,𝑡)
[∫ 𝑦𝑔𝑚−2(𝑦){𝑀1(𝑦) +

𝑎

𝑐
𝑀1(𝑦, 𝑡)𝑑𝑦 + ∫ 𝑔𝑚−2(𝑦)

𝑎

𝑐
{𝑀11(𝑦) 

                                                                   +𝑀22(𝑦, 𝑡)}dy],                                                                     (4.7) 

with 

                                                      Po(t)= ∫
sin (

𝑞𝑥

2
)√(𝐺(𝑐,𝑥)𝑝(𝑥)𝑑𝑥

𝐺(𝑥,𝑡)

𝑎

𝑐
,                                                           (4.8) 

                                𝑀1(𝑦) = ∑ ∑ [∞
𝑙=0

𝑎

√2
(∞

𝑚=0 𝑑1 + 𝑑2 + 𝑑7 + 𝑑8) + ∑ ∫
sin(

𝑞𝑥

2
)

√𝐺(𝑐,𝑥)
𝑑3𝑟(𝑥, 𝑦)𝑑𝑥]

𝑎

𝑐
4
𝑟=1        

(4. 9) 

                                𝑀2(𝑦, 𝑡) = ∑
sin(

𝑞𝑥

2
)𝑑3𝑖(𝑥,𝑦)𝑑𝑥

√(𝑐,𝑥)𝐺(𝑥,𝑡)
]4

𝑖=1 G(t, c)         (4.10) 

                                𝑀11(𝑦) = ∑ ∑ [−∞
𝑙=0

𝑎

√2
(∞

𝑚=0 𝑑7 + 𝑑8 − 2𝑑4 − 2𝑑5 − 𝑑1 − 𝑑2) 

+ ∫
sin(

𝑞𝑥

2
)

√𝐺(𝑐,𝑥)
(𝑑9 − 𝑑3 − 𝑑6 − 𝑑12)𝑑𝑥]

𝑎

𝑐
    

 (4.11) 

                                𝑀22(𝑦, 𝑡) = 𝐺(𝑡, 𝑐) ∫
sin(

𝑞𝑥

2
)

√𝐺(𝑐,𝑥)𝐺(𝑥,𝑡)
(𝑑9 − 𝑑3 − 𝑑6 − 𝑑12}𝑑𝑥]

𝑎

𝑐
                               

(4.12) 

Thus the solution of Fredholm integral equation (2.9) has got solution given through the equation 

(4.6)-(4.12). The only variable in this solution is  𝑝0(𝑡) which changes according to loading. 

Therefore, in the next section we consider the different types of loading. 

Special Cases of Loading 

In the present section we are going to deal with there types of loading, namely 

Case I- Polynomial (in cosine function) 

Case II- Constant through at the crack faces 

Case III- Point loads at cracks faces 

we shall discuss one by one. 

Case I- we take the loading p(x) as follows 

                                                            p(x) = 𝑝0  ∑ 𝛽𝑟𝑐𝑜𝑠𝑟𝑥∞
𝑟=0 ,                                                      (5.1) 

M 10 

Where 𝑃0 is Polynomial of stress, 𝛽𝑟 are arbitrary but known constants. Now we substitute this 

value of p(x) from equation (5.1) into equation (4.8) and evaluate the integrals we get 

       𝑃0(t) = 𝑝0 ∑ 𝑎𝑟𝐼𝑟(𝑡), 𝐼𝑟(𝑡) =∞
𝑟=0 𝐷𝑟−1 + cos(𝑞𝑡) 𝐼𝑟−1(𝑡), (𝑡)                              (5.2) 

with 𝐷𝑟−1 as constant and defined as  

                                      𝐷𝑟−1 = ∫ sin (𝑞𝑥/2)√𝐺(𝑐, 𝑥)𝑐𝑜𝑠𝑟−1(𝑞𝑥)
𝑎

𝑐
 𝑑𝑥                                             (5.3) 

𝐷0= √(2𝑎) 

    𝐼0 = −
𝑎

√2
 + 

𝑎

2
 G(c,t) {

1

𝐺(𝑡,𝑐)
, 0≤t≤c       

(5.4) 

0,    a≥t≥c. 
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Substituting this know value 𝑃0(t) into equation (4.6) and get 𝑔0(𝑡) 

          𝑔1(𝑡)= 
8 𝑝0cos (𝑞𝑡/2)

𝜋2√(𝐺(𝑐,𝑡))
 ∑ [𝛼𝑟𝑇1 +∞

𝑟=0 𝐿𝑟
(1)(𝑡)],                                           (5.5) 

where 𝑇1 is and constant and defined 

                                                       𝑇1= ∫
cos(

𝑞𝑦

2
)𝑀11(𝑦)

√(𝐺(𝑐,𝑡))

𝑎

𝑐
𝐼𝑟(𝑦)𝑑𝑦,                                                           (5.6) 

   𝐿𝑟
1 (t)= ∫

cos(
𝑞𝑦

2
)𝑀11(𝑦)

√(𝐺(𝑐,𝑡))

𝑎

𝑐
𝐼𝑟(𝑦) x 𝑀22(𝑦, 𝑡)𝑑𝑦                                                 (5.7) 

With 𝐼𝑟 defined by second of equation (5.2) 

Similarly 

                                           𝑔2(𝑡) = 
64𝑝0

𝜋4  
cos (𝑞𝑡/2)

√𝐺(𝑐,𝑦))
∑ [∞

𝑟=0 (𝑎𝑟𝑇2 + 𝑇3) + 𝐿𝑟
(2)(𝑡)],                              (5.8) 

where 𝑇2 and 𝑇3 are constants and defined as  

    𝑇2 = ∫ 𝑦 
𝑎

𝑐

cos (𝑞𝑦/2)

√𝐺(𝑐,𝑦))
 𝐼𝛼(𝑦)𝑀1(𝑦)𝑑𝑦,    

 (5.9) 

       𝑇3 = ∫
cos (𝑞𝑦/2)

√𝐺(𝑐,𝑦))

𝑎

𝑐
[(𝑎𝑟𝑇1 + 𝐿𝑟

1 (y)] dy     

 (5.10) 

Hence we can easily calculate other value of {𝑔𝑚(t)} and get total value substtituting these in the 

expressions of physical quantities we get the physical quantities to the required  

Case II - we Consider the case  

p(x) = 𝑃0 (Constant) 

Thus we get from equations (4.8) and (5.11) 

    𝑃0(𝑡) =  
𝑎𝑃0

√2
; 𝑔0(𝑡) =  

2𝑎𝑃0

√2
 
cos (𝑞𝑡/2)

√𝐺(𝑐,𝑦))
    

 (5.12) 

                                                𝑔1(𝑡) =  
8𝑎

𝜋2√2
𝑃0[𝑇11 + 𝑇12(𝑡)] 

cos (𝑞𝑡/2)

√𝐺(𝑐,𝑦))
,    

 (5.13) 

where  

     𝑇11 = ∫
cos(

𝑞𝑦

2
)

√𝐺(𝑐,𝑦))

𝑎

𝑐
𝑀11(𝑡)𝑑𝑦,    

 (5.14) 

 

     𝑇12 = ∫
cos(

𝑞𝑦

2
)

√𝐺(𝑐,𝑦))

𝑎

𝑐
𝑀22(𝑦, 𝑡)𝑑𝑦,    

 (5.15) 

Similarly 

                                               𝑔2(𝑡)= 
8𝑎

𝜋2√2

cos(
𝑞𝑦

2
)

√𝐺(𝑐,𝑦))
 [𝑇21 + 𝑇22(𝑡) +

4

𝜋2 {𝑇23 + 𝑇24(𝑡)}],                     (5.16) 

with 

   𝑇21= ∫ 𝑦
cos(

𝑞𝑦

2
)

(𝐺(𝑐,𝑦))

𝑎

𝑐
𝑀1(𝑦)𝑑𝑦, 𝑇22(𝑡) = ∫ 𝑦

cos(
𝑞𝑦

2
)

√(𝐺(𝑐,𝑦))

𝑎

𝑐
𝑀2(𝑦, 𝑡)𝑑𝑦,               

(5.17) 
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     𝑇23= ∫ {𝑇11 +
𝑎

𝑐
𝑇12(𝑦)} 

cos(
𝑞𝑦

2
)

(𝐺(𝑐,𝑦))
 𝑀11(𝑦) 𝑑𝑦,   

 (5.18) 

     𝑇24(𝑡)= ∫ {𝑇11 +
𝑎

𝑐
𝑇12(𝑦)} 

cos(
𝑞𝑦

2
)

√(𝐺(𝑐,𝑦))

 𝑀22(𝑦, 𝑡) 𝑑𝑦, 

 (5.19) 

Thus we can calculate other value of {𝑔𝑚}'s. Hence substituting these value in expression of physical 

quantities we get the expression for physical quantities for this case of loading. 

Case III- We Consider the loading defend as  

      p(x) 
1

2
𝑝0𝛿(𝑦){𝛿(𝑥 − 𝑑) + 𝛿(𝑥 + 𝑑)}                                      (5.20) 

Substituting this value of p(x) in (4.8) we get 

   𝑔0(𝑡)= 
2𝑃0 cos(

𝑞𝑡

2
)

√(𝐺(𝑐,𝑡))

 
sin (𝑞𝑑/2)√(𝐺(𝑐,𝑑))

𝐺(𝑑,𝑡)
, 𝑔−1(𝑡) = 0                                   (5.21) 

Calculating from equation (4.7) 

            𝑔1(𝑡) =
8

𝜋2

𝑝0 cos(
𝑞𝑦

2
)

√(𝐺(𝑐,𝑦))

[sin qd/2√(𝐺(𝑐, 𝑑)) {𝑇31 + 𝑇32(𝑡)}],                       (5.22)   

where 

     𝑇31 = ∫
cos(

𝑞𝑦

2
)

√(𝐺(𝑐,𝑦))

𝑎

𝑐
 
𝑀11(𝑦)𝑑𝑦

𝐺(𝑑,𝑦)
,             (5.23) 

                                                                  𝑇32 = ∫
cos(

𝑞𝑦

2
)

√(𝐺(𝑐,𝑦))

𝑎

𝑐
 
𝑀22(𝑦,𝑡)𝑑𝑦

𝐺(𝑑,𝑦)
,             (5.25) 

Thus we can calculate {gm},m≥2 from equation (4.7) and (5.21)- (5.24). Therefore, it is easy to 

evaluate physical quantities. 
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