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  We decomposing the balanced complete bipartite graph 𝐾2𝑛,2𝑛  into 𝐶4 ’s and 𝐶4𝑛 ’s. In particular, we find 

necessary and sufficient conditions for accomplishing this when 𝑛 ≥ 2, for 𝑛 ≡ 0(mod2). As a consequence, we show that for 

nonnegative integers 𝑝 and 𝑞, with 𝑛 ≥ 2, there exists a decomposition of the balanced complete bipartite graph 𝐾2𝑛,2𝑛 

into 𝑝 copies of 𝐶2𝑛 and 𝑞 copies of 𝐶4 if and only if 2𝑛𝑝 + 4𝑞 = 4𝑛2, except when 𝑝 is odd and 𝑛 is even.  
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1  Introduction 

 Unless stated otherwise all graphs considered here are finite, simple, and undirected. For the 

standard graph-theoretic the readers are referred to [1]. A cycle of length 𝑚 is called 𝑚-cycle and it is 

denoted by 𝐶𝑚. Let 𝐾𝑚, 𝐼𝑚  respectively denote a complete graph and an independent set on 𝑚 

vertices. 𝐾𝑚,𝑛  denotes the complete bipartite graph with 𝑚  and 𝑛  vertices in the parts. A graph 

whose vertex set is partitioned into sets 𝑉1, … , 𝑉𝑚  such that the edge set is ⋃𝑖≠𝑗∈[𝑚] 𝑉𝑖 × 𝑉𝑗  is a  

complete 𝑚-partite graph, denoted by 𝐾𝑛1,…,𝑛𝑚
 when |𝑉𝑖| = 𝑛𝑖 for all 𝑖. For any integer 𝜆 > 0, 𝜆𝐺 

denotes the graph consisting of 𝜆  edge-disjoint copies of 𝐺.  The complement of the graph 𝐺  is 

denoted by 𝐺.  Let (𝑥0𝑥1 … 𝑥𝑘−1𝑥0)  denote the cycle 𝐶𝑘  with vertices 𝑥0, 𝑥1, … , 𝑥𝑘−1  and edges 

𝑥0𝑥1, 𝑥1𝑥2, … , 𝑥𝑘−2𝑥𝑘−1, 𝑥𝑘−1𝑥0.  The  𝜆 -multiplication of 𝐺,  denoted 𝐺(𝜆),  is the multigraph 

obtained from a graph 𝐺  by replacing each edge with 𝜆  edges. For two graphs 𝐺  and 𝐻,  their 

lexicographic product or wreath product 𝐺 ⊗ 𝐻  has vertex set 𝑉(𝐺) × 𝑉(𝐻)  with two vertices 

(𝑔1, ℎ1)  and (𝑔2, ℎ2)  adjacent whenever 𝑔1𝑔2 ∈ 𝐸(𝐺)  or 𝑔1 = 𝑔2  and ℎ1ℎ2 ∈ 𝐸(𝐻).  The 

complement of the graph 𝐺 is denoted by 𝐺. 
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By a  decomposition of a graph 𝐺, we mean a list of edge-disjoint subgraphs of 𝐺 whose union 

is 𝐺 (ignoring isolated vertices). For a graph 𝐺, if 𝐸(𝐺) can be partitioned into 𝐸1, … , 𝐸𝑘 such that 

the subgraph induced by 𝐸𝑖  is 𝐻𝑖, for all 𝑖, 1 ≤ 𝑖 ≤ 𝑘, then we say that 𝐻1, … , 𝐻𝑘  decompose 𝐺 

and we write 𝐺 = 𝐻1 ⊕ … ⊕ 𝐻𝑘, since 𝐻1, … , 𝐻𝑘  are edge-disjoint subgraphs of 𝐺. For 1 ≤ 𝑖 ≤ 𝑘, 

if 𝐻𝑖 ≅ 𝐻, we say that 𝐺 has a 𝐻-decomposition. A cycle passing through all the vertices of 𝐺 is called  

hamilton cycle of 𝐺. An 𝑛-regular graph 𝐺 is said to have a   Hamilton cycle decomposition if its edge 

set can be partitioned into 𝑛/2 Hamilton cycles when 𝑛 is even. If 𝐺  has a decomposition into 𝑝 

copies of 𝐻1 and 𝑞 copies of 𝐻2, then we say that 𝐺 has a  {𝑝𝐻1, 𝑞𝐻2}-decomposition. If such a 

decomposition exists for all values of 𝑝 and 𝑞 satisfying trivial necessary conditions, then we say that 

𝐺 has a {𝐻1, 𝐻2}{𝑝,𝑞}-decomposition or G is  fully {𝐻1, 𝐻2}-decomposable. 

Study of {𝐻1, 𝐻2}{𝑝,𝑞}-decomposition for graphs is not new. Chou et al. [2] proved that for a given 

triple (𝑝, 𝑞, 𝑟) of nonnegative integers, 𝐺 decompose into 𝑝 copies of 𝐶4, 𝑞 copies of 𝐶6, and 𝑟 

copies of 𝐶8 such that 4𝑝 + 6𝑞 + 8𝑟 = |𝐸(𝐺)| in the following two cases: (a) 𝐺 = 𝐾𝑚,𝑛 with 𝑚 and 

𝑛 both even at least 4, except 𝐾4,4, (b) 𝐺 is obtained from 𝐾𝑛,𝑛 with 𝑛 odd by deleting a perfect 

matching. Chou and Fu [3] proved that the existence of {𝐶4, 𝐶2𝑡}{𝑝,𝑞}-decomposition of 𝐾2𝑢,2𝑣, where 

𝑡/2 ≤ 𝑢, 𝑣 < 𝑡  when 𝑡  even (resp., (𝑡 + 1)/2 ≤ 𝑢, 𝑣 ≤ (3𝑡 − 1)/2  when 𝑡  odd) implies such 

decomposition in 𝐾2𝑚,2𝑛, where 𝑚, 𝑛 ≥ 𝑡 (resp., 𝑚, 𝑛 ≥ (3𝑡 + 1)/2). Jeevadoss and Muthusamy [4] 

reduced the bounds in the sufficient conditions obtained by Chou and Fu [3] for the existence of 

{𝐶4, 𝐶2𝑡}{𝑝,𝑞}-decomposition of 𝐾2𝑚,2𝑛, when 𝑡 > 2. 

 

In this paper, we study the existence of {𝐶4, 𝐶4𝑛}{𝑝,𝑞} -decomposition of 𝐾2𝑛,2𝑛. In fact, we 

establish some necessary and sufficient conditions for the existence of {𝐶4, 𝐶4𝑛}{𝑝,𝑞}-decomposition of 

𝐾2𝑛,2𝑛. 

 

Let 𝐾𝑛,𝑛 be the complete bipartite graph with bipartition (𝑋, 𝑌), where 𝑋 = {𝑥1, … , 𝑥𝑛} and 

𝑌 = {𝑦1, … , 𝑦𝑛}. For 0 ≤ 𝑖 ≤ 𝑛 − 1, let 𝐹𝑖(𝑋, 𝑌) denote the set {𝑥𝑗𝑦𝑗+𝑖: 𝑗 ∈ [𝑛]}, where subscripts 

are taken modulo 𝑛. Clearly 𝐹𝑖(𝑋, 𝑌) is a 1-factor of 𝐾𝑛,𝑛, called the 1-factor of  distance 𝑖. Also, 

⋃𝑛−1
𝑖=0 𝐹𝑖(𝑋, 𝑌) = 𝐾𝑛,𝑛. In a complete bipartite graph with bipartition (𝑋, 𝑌) with |𝑋| = |𝑌|, an edge 

𝑥𝑖𝑦𝑗  is called an edge of  distance 𝑗 − 𝑖 if 𝑖 ≤ 𝑗, or 𝑛 − (𝑖 − 𝑗), if 𝑖 > 𝑗, from 𝑋 to 𝑌. (The same 

edge is said to be of  distance 𝑖 − 𝑗 if 𝑖 ≥ 𝑗 or 𝑛 − (𝑖 − 𝑗), if 𝑖 < 𝑗, from 𝑌 to 𝑋. 

 

Remark 1.1 

 

i. For 𝑛 ∈ ℕ, let 𝐾2𝑛,2𝑛  have partite sets 𝑋1 ∪ 𝑋3  and 𝑋2 ∪ 𝑋4, where 𝑋𝑟 = {𝑥1
𝑟, … , 𝑥𝑛

𝑟}. For 

0 ≤ 𝑖 ≤ 𝑛 − 1,  let 𝐹𝑖(𝑋𝑟, 𝑋𝑠) = {𝑥𝑗
𝑟𝑥𝑗+𝑖

𝑠  ∶   𝑗 ∈ [𝑛]},  where arithmetic in subscripts is taken 

modulo 𝑛.  Note that the union of the sets 𝐹𝑖(𝑋𝑟 , 𝑋𝑠)  over all 𝑖  and (𝑟, 𝑠) ∈

{(1,2), (2,3), (3,4), (4,1)} decomposes 𝐾2𝑛,2𝑛.  

ii. For 𝑘 ∈ {0, … , 𝑛 − 1}  and 𝑖 ∈ {1,2,3,4},  the set 𝐹𝑘(𝑋𝑖, 𝑋𝑖+1) ∪ 𝐹𝑘+1(𝑋𝑖, 𝑋𝑖+1)  forms a 2 -

regular subgraph of 𝐾2𝑛,2𝑛 consisting a cycle of length 2𝑛.  

iii. For any positive integer 𝑛, the set 𝐹0(𝑋1, 𝑋2) ∪ 𝐹0(𝑋2, 𝑋3) ∪ 𝐹0(𝑋3, 𝑋4) ∪ 𝐹1(𝑋4, 𝑋1) forms a 
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Hamilton cycle of 𝐾2𝑛,2𝑛.  

iv. 𝐹𝑘(𝑋𝑖, 𝑋𝑗) = 𝐹𝑛−𝑘(𝑋𝑗, 𝑋𝑖), where 0 ≤ 𝑘 ≤ 𝑛 − 1.  

v. For odd 𝑛, the set 𝐹𝑛−1(𝑋1, 𝑋2) ⊕ 𝐹0(𝑋2, 𝑋3) ⊕ 𝐹𝑛−1(𝑋3, 𝑋4) ⊕ 𝐹0(𝑋4, 𝑋1) forms a Hamilton 

cycle of 𝐾2𝑛,2𝑛.  

vi. For even 𝑛 , the set 𝐹𝑛−1(𝑋1, 𝑋2) ⊕ 𝐹0(𝑋2, 𝑋3) ⊕ 𝐹𝑛(𝑋3, 𝑋4) ⊕ 𝐹0(𝑋4, 𝑋1)  forms a Hamilton 

cycle of 𝐾2𝑛,2𝑛.  

vii. The edges of 𝐹𝑛−𝑘(𝑋1, 𝑋2) ⊕ 𝐹𝑘(𝑋2, 𝑋3) ⊕ 𝐹𝑛−𝑘(𝑋3, 𝑋4) ⊕ 𝐹𝑘(𝑋4, 𝑋1)  forms a 𝐶4 

decomposition of 𝐾2𝑛,2𝑛 where 0 ≤ 𝑘 ≤ 𝑛 − 1.  

viii. The edges of 𝐹𝑗(𝑋1, 𝑋2) ⊕ 𝐹𝑗+1(𝑋1, 𝑋2),  can be decomposed into 𝑃3′𝑠  such that any two 

consecutive vertices 𝑥𝑟
1, 𝑥𝑟+1

1 , 1 ≤ 𝑟 ≤ 𝑛 serve as end vertices in exactly one component in the 

𝑃3- decomposition. Similarly the edges of 𝐹𝑘(𝑋1, 𝑋4) ⊕ 𝐹𝑘+1(𝑋1, 𝑋4), can be decomposed into 

𝑃3′𝑠 such that any two consecutive vertices 𝑥𝑟
1, 𝑥𝑟+1

1 , 1 ≤ 𝑟 ≤ 𝑛, serve as end vertices in exactly 

one component in the 𝑃3 - decomposition, thus (𝑥𝑟
1𝑥𝑎

2𝑥𝑏
4𝑥𝑟+1

1 )  forms a four cycle. Thus 

𝐹𝑗(𝑋1, 𝑋2) ⊕ 𝐹𝑗+1(𝑋1, 𝑋2) ⊕ 𝐹𝑘(𝑋1, 𝑋4) ⊕ 𝐹𝑘+1(𝑋1, 𝑋4) can be decomposed into 4-cycles. Also 

𝐹𝑗(𝑋3, 𝑋2) ⊕ 𝐹𝑗+1(𝑋3, 𝑋2) ⊕ 𝐹𝑘(𝑋3, 𝑋4) ⊕ 𝐹𝑘+1(𝑋3, 𝑋4)  can be decomposed into 4-cycles, 

where 0 ≤ 𝑗, 𝑘 ≤ 𝑛 − 1.  

  

 

2  {𝑪𝟒, 𝑪𝟒𝒏}{𝒑,𝒒}-decomposition of 𝑲𝟐𝒏,𝟐𝒏.  

 In this section we investigate the decompositions of 𝐾2𝑛,2𝑛 − 𝛼𝐻 into 𝐶4, where 𝛼𝐻 denotes 

the 𝛼 edge-disjoint Hamilton cycles of 𝐾2𝑛,2𝑛. 

Theorem 2.1  For odd 𝑛 ≥ 3, the graph 𝐾2𝑛,2𝑛 − 𝐻 can be decomposed into 4-cycles.   

Proof. Without loss of generality, let  

 𝑉(𝐾2𝑛,2𝑛) = (𝑋1 ∪ 𝑋3, 𝑋2 ∪ 𝑋4), 

𝐸(𝐾2𝑛,2𝑛 − 𝐻) = ⋃

𝑛−1

𝑘=0

(𝐹𝑘(𝑋1, 𝑋2) ⊕ 𝐹𝑘(𝑋2, 𝑋3) ⊕ 𝐹𝑘(𝑋3, 𝑋4) ⊕ 𝐹𝑘(𝑋4, 𝑋1))\𝐻 

 where 𝐻 = 𝐹𝑛−1(𝑋1, 𝑋2) ⊕ 𝐹0(𝑋2, 𝑋3) ⊕ 𝐹𝑛−1(𝑋3, 𝑋4) ⊕ 𝐹0(𝑋4, 𝑋1), is an Hamilton cycle of 𝐾2𝑛,2𝑛.  

 𝐾2𝑛,2𝑛 − 𝐻 = ⊕
𝑘=0

𝑛−3

2

[𝐴2𝑘,2𝑘+1(𝑋1, 𝑋2) ⊕ 𝐴′𝑛−(2𝑘+1),𝑛−(2𝑘+2)(𝑋4, 𝑋1)] ⊕ 

                 ⊕
𝑘=0

𝑛−3

2

[𝐵𝑛−(2𝑘+1),𝑛−(2𝑘+2)(𝑋2, 𝑋3) ⊕ 𝐵′2𝑘,2𝑘+1(𝑋3, 𝑋4)], 

  

By Remark 1.1,  

 𝐾2𝑛,2𝑛 − 𝐻 = ⊕
𝑘=0

𝑛−3

2

[𝐴2𝑘,2𝑘+1(𝑋1, 𝑋2) ⊕ 𝐴′2𝑘+1,2𝑘+2(𝑋1, 𝑋4)] ⊕ 

                 ⊕
𝑘=0

𝑛−3

2

[𝐵2𝑘+1,2𝑘+2(𝑋3, 𝑋2) ⊕ 𝐵′2𝑘,2𝑘+1(𝑋3, 𝑋4)], 

 where  

 𝐴2𝑘,2𝑘+1(𝑋1, 𝑋2) = 𝐹2𝑘(𝑋1, 𝑋2) ⊕ 𝐹2𝑘+1(𝑋1, 𝑋2) 
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 𝐴′2𝑘+1,2𝑘+2(𝑋1, 𝑋4) = 𝐹2𝑘+1(𝑋1, 𝑋4) ⊕ 𝐹2𝑘+2(𝑋1, 𝑋4) 

 𝐵2𝑘+1,2𝑘+2(𝑋3, 𝑋2) = 𝐹2𝑘+1(𝑋3, 𝑋2) ⊕ 𝐹2𝑘+2(𝑋3, 𝑋2) 

 𝐵′2𝑘,2𝑘+1(𝑋3, 𝑋4) = 𝐹2𝑘(𝑋3, 𝑋4) ⊕ 𝐹2𝑘+1(𝑋3, 𝑋4). 

 By Remark 1.1, 𝐴2𝑘,2𝑘+1(𝑋1, 𝑋2) ⊕ 𝐴′2𝑘+1,2𝑘+2(𝑋1, 𝑋4) can be decomposed into 4-cycles, similarly 

𝐵2𝑘+1,2𝑘+2(𝑋3, 𝑋2) ⊕ 𝐵′2𝑘,2𝑘+1(𝑋3, 𝑋4) can be decomposed in 4-cycles, we obtain the proof.   

Theorem 2.2 For odd 𝑛 ≥ 3, odd 𝛼, 1 ≤ 𝛼 ≤ 𝑛, the graph 𝐾2𝑛,2𝑛 − 𝛼𝐻 can be decomposed into 4-

cycles.   

Proof. Without loss of generality, let    

                                                                                     

        𝑉(𝐾2𝑛,2𝑛) = (𝑋1 ∪ 𝑋3, 𝑋2 ∪ 𝑋4)      where𝑋𝑖 = {𝑥1
𝑖 , 𝑥2

𝑖 , ⋯ , 𝑥𝑛
𝑖 }, 

𝐸(𝐾2𝑛,2𝑛 − 𝛼𝐻) = ⋃

𝑛−1

𝑘=0

[𝐹𝑘(𝑋1, 𝑋2) ⊕ 𝐹𝑘(𝑋2, 𝑋3) ⊕ 𝐹𝑘(𝑋3, 𝑋4) ⊕ 𝐹𝑘(𝑋4, 𝑋1)]\ ⋃

𝛼−1

𝑝=0

𝐻𝑝, 

 where 𝐻𝑝 = 𝐹𝑛+1−𝑝(𝑋1, 𝑋2) ⊕ 𝐹𝑝(𝑋2, 𝑋3) ⊕ 𝐹𝑛−𝑝(𝑋3, 𝑋4) ⊕ 𝐹𝑝(𝑋4, 𝑋1) , for 0 ≤ 𝑝 ≤ 𝛼 − 1  are 

edge disjoint Hamilton cycles of 𝐾2𝑛,2𝑛.  

 𝐾2𝑛,2𝑛 − 𝛼𝐻 = ⊕
𝑘=0

𝑛−𝛼−2

2

[𝐴2𝑘+2,2𝑘+3(𝑋1, 𝑋2) ⊕ 𝐴′𝑛−(2𝑘+1),𝑛−(2𝑘+2)(𝑋4, 𝑋1)] ⊕ 

 ⊕
𝑘=0

𝑛−𝛼−2

2

[𝐵𝑛−(2𝑘+1),𝑛−(2𝑘+2)(𝑋2, 𝑋3) ⊕ 𝐵′2𝑘+1,2𝑘+2(𝑋3, 𝑋4)]. 

  

By Remark 1.1,  

 𝐾2𝑛,2𝑛 − 𝛼𝐻 = ⊕
𝑘=0

𝑛−𝛼−2

2

[𝐴2𝑘+2,2𝑘+3(𝑋1, 𝑋2) ⊕ 𝐴′2𝑘+1,2𝑘+2(𝑋1, 𝑋4)] ⊕ 

 ⊕
𝑘=0

𝑛−𝛼−2

2

[𝐵2𝑘+1,2𝑘+2(𝑋3, 𝑋2) ⊕ 𝐵′2𝑘+1,2𝑘+2(𝑋3, 𝑋4)], 

 where  

 𝐴2𝑘+2,2𝑘+3(𝑋1, 𝑋2) = 𝐹2𝑘+2(𝑋1, 𝑋2) ⊕ 𝐹2𝑘+3(𝑋1, 𝑋2) 

 𝐴′2𝑘+1,2𝑘+2(𝑋1, 𝑋4) = 𝐹2𝑘+1(𝑋1, 𝑋4) ⊕ 𝐹2𝑘+2(𝑋1, 𝑋4) 

 𝐵2𝑘+1,2𝑘+2(𝑋3, 𝑋2) = 𝐹2𝑘+1(𝑋3, 𝑋2) ⊕ 𝐹2𝑘+2(𝑋3, 𝑋2) 

 𝐵′2𝑘+1,2𝑘+2(𝑋3, 𝑋4) = 𝐹2𝑘+1(𝑋3, 𝑋4) ⊕ 𝐹2𝑘+2(𝑋3, 𝑋4). 

  

By Remark 1.1, 𝐴2𝑘+2,2𝑘+3(𝑋1, 𝑋2) ⊕ 𝐴′2𝑘+1,2𝑘+2(𝑋1, 𝑋4) can be decomposed into 4-cycles, similarly 

𝐵2𝑘+1,2𝑘+2(𝑋3, 𝑋2) ⊕ 𝐵′2𝑘+1,2𝑘+2(𝑋3, 𝑋4) can be decomposed in 4-cycles, we obtain the proof.   

Theorem 2.3 For odd 𝑛 ≥ 3, even 𝛼, 1 ≤ 𝛼 ≤ 𝑛, the graph 𝐾2𝑛,2𝑛 − 𝛼𝐻 can be decomposed into 4-

cycles.   

Proof. Without loss of generality,  

 Let 𝑉(𝐾2𝑛,2𝑛) = (𝑋1 ∪ 𝑋3, 𝑋2 ∪ 𝑋4)where𝑋𝑖 = {𝑥1
𝑖 , 𝑥2

𝑖 , ⋯ , 𝑥𝑛
𝑖 }, 

 For 𝛼 < 𝑛 − 1,  
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𝐸(𝐾2𝑛,2𝑛 − 𝛼𝐻) = ⋃

𝑛−1

𝑘=0

[𝐹𝑘(𝑋1, 𝑋2) ⊕ 𝐹𝑘(𝑋2, 𝑋3) ⊕ 𝐹𝑘(𝑋3, 𝑋4) ⊕ 𝐹𝑘(𝑋4, 𝑋1)]\ ⋃

𝛼−1

𝑝=0

𝐻𝑝, 

 where𝐻𝑝 = 𝐹𝑛−1+𝑝(𝑋1, 𝑋2) ⊕ 𝐹𝑛−1−𝑝(𝑋2, 𝑋3) ⊕ 𝐹𝑛−1−𝑝(𝑋3, 𝑋4) ⊕ 𝐹𝑛−1+𝑝(𝑋4, 𝑋1),for 0 ≤ 𝑝 ≤ 𝛼 −

1 are edge disjoint Hamilton cycles of 𝐾2𝑛,2𝑛.  

𝐾2𝑛,2𝑛 − 𝛼𝐻 = ⊕
𝑘=0

𝑛−𝛼−3
2

[𝐴𝑛−(2𝑘+3),𝑛−(2𝑘+4)(𝑋1, 𝑋2) ⊕ 𝐴′2𝑘+3,2𝑘+4(𝑋1, 𝑋4)] ⊕ 

                     ⊕
𝑖=0

𝑛−𝛼−5

2

[𝐵𝑛−(2𝑘+3),𝑛−(2𝑘+4)(𝑋3, 𝑋2) ⊕ 𝐵′2𝑘+3,2𝑘+4(𝑋3, 𝑋4)] ⊕ 𝑌 ⊕ 𝑍, 

 

 

 For 𝛼 = 𝑛 − 1,  

𝐸(𝐾2𝑛,2𝑛 − 𝛼𝐻) = ⋃

𝑛−1

𝑘=0

[𝐹𝑘(𝑋1, 𝑋2) ⊕ 𝐹𝑘(𝑋2, 𝑋3) ⊕ 𝐹𝑘(𝑋3, 𝑋4) ⊕ 𝐹𝑘(𝑋4, 𝑋1)]\ 

                                                                 [⋃𝛼−1
𝑝=0,𝑝≠𝛼−2 𝐻𝑝 ⊕ 𝑊], 

 where 𝐻𝑝 = 𝐹𝑛−1+𝑝(𝑋1, 𝑋2) ⊕ 𝐹𝑛−1−𝑝(𝑋2, 𝑋3) ⊕ 𝐹𝑛−1−𝑝(𝑋3, 𝑋4) ⊕ 𝐹𝑛−1+𝑝(𝑋4, 𝑋1), for 0 ≤ 𝑝(≠

𝛼 − 2) ≤ 𝛼 − 1 are edge disjoint Hamilton cycles of 𝐾2𝑛,2𝑛.  

 𝐾2𝑛,2𝑛 − 𝛼𝐻 = 𝑍 

 where,  

 𝐴𝑛−(2𝑘+3),𝑛−(2𝑘+4)(𝑋1, 𝑋2) = 𝐹𝑛−(2𝑘+3)(𝑋1, 𝑋2) ⊕ 𝐹𝑛−(2𝑘+4)(𝑋1, 𝑋2) 

 𝐴′2𝑘+3,2𝑘+4(𝑋1, 𝑋4) = 𝐹2𝑘+3(𝑋1, 𝑋4) ⊕ 𝐹2𝑘+4(𝑋1, 𝑋4) 

 𝐵𝑛−(2𝑘+3),𝑛−(2𝑘+4)(𝑋3, 𝑋2) = 𝐹𝑛−(2𝑘+3)(𝑋3, 𝑋2) ⊕ 𝐹𝑛−(2𝑘+4)(𝑋3, 𝑋2) 

 𝐵′2𝑘+3,2𝑘+4(𝑋3, 𝑋4) = 𝐹2𝑘+3(𝑋3, 𝑋4) ⊕ 𝐹2𝑘+4(𝑋3, 𝑋4). 

            𝑌 = 𝐵0,𝑛−1(𝑋3, 𝑋2) ⊕ 𝐵′0,1(𝑋3, 𝑋4) 

 𝑊 = 𝐹𝑛−4(𝑋1, 𝑋2) ⊕ 𝐹0(𝑋2, 𝑋3) ⊕ 𝐹0(𝑋3, 𝑋4) ⊕ 𝐹𝑛−4(𝑋4, 𝑋1) 

 𝑍 = 𝐹𝑛−2(𝑋1, 𝑋2) ⊕ 𝐹2(𝑋2, 𝑋3) ⊕ 𝐹2(𝑋3, 𝑋4) ⊕ 𝐹𝑛−2(𝑋4, 𝑋1) 

By Remark 1.1, 𝐴𝑛−(2𝑘+3),𝑛−(2𝑘+4)(𝑋1, 𝑋2) ⊕ 𝐴′2𝑘+3,2𝑘+4(𝑋1, 𝑋4)  can be decomposed into 4-cycles, 

similarly 𝐵𝑛−(2𝑘+3),𝑛−(2𝑘+4)(𝑋3, 𝑋2) ⊕ 𝐵′2𝑘+3,2𝑘+4(𝑋3, 𝑋4), 𝑌 and 𝑍 can be decomposed in 4-cycles, 

𝑊 is an Hamilton cycle , we obtain the proof.   

 

Theorem 2.4 For even 𝑛 ≥ 4, even 𝛼, 1 ≤ 𝛼 ≤ 𝑛, the graph 𝐾2𝑛,2𝑛 − 𝛼𝐻 can be decomposed into 4-

cycles.   

Proof. Without loss of generality, Let  

𝑉(𝐾2𝑛,2𝑛) = (𝑋1 ∪ 𝑋3, 𝑋2 ∪ 𝑋4), where 𝑋𝑖 = {𝑥1
𝑖 , 𝑥2

𝑖 , ⋯ , 𝑥𝑛
𝑖 }, 

𝐸(𝐾2𝑛,2𝑛 − 𝛼𝐻) = ⋃

𝑛−1

𝑘=0

[𝐹𝑘(𝑋1, 𝑋2) ⊕ 𝐹𝑘(𝑋2, 𝑋3) ⊕ 𝐹𝑘(𝑋3, 𝑋4) ⊕ 𝐹𝑘(𝑋4, 𝑋1)]\ ⋃

𝛼−1

𝑝=0

𝐻𝑝, 

 where 𝐻𝑝 = 𝐹𝑛+1−𝑝(𝑋1, 𝑋2) ⊕ 𝐹𝑝(𝑋2, 𝑋3) ⊕ 𝐹𝑛−𝑝(𝑋3, 𝑋4) ⊕ 𝐹𝑝(𝑋4, 𝑋1) , for 0 ≤ 𝑝 ≤ 𝛼 − 1  are 

edge disjoint Hamilton cycles of 𝐾2𝑛,2𝑛.  
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 𝐾2𝑛,2𝑛 − 𝛼𝐻 = ⊕
𝑘=0

𝑛−𝛼−2

2

[𝐴2𝑘+2,2𝑘+3(𝑋1, 𝑋2) ⊕ 𝐴′2𝑘+1,2𝑘+2(𝑋1, 𝑋4)] ⊕ 

                            ⊕
𝑘=0

𝑛−𝛼−2

2

[𝐵2𝑘+1,2𝑘+2(𝑋3, 𝑋2) ⊕ 𝐵′2𝑘+1,2𝑘+2(𝑋3, 𝑋4)], 

 where  

 𝐴2𝑘+2,2𝑘+3(𝑋1, 𝑋2) = 𝐹2𝑘+2(𝑋1, 𝑋2) ⊕ 𝐹2𝑘+3(𝑋1, 𝑋2) 

 𝐴′2𝑘+1,2𝑘+2(𝑋1, 𝑋4) = 𝐹2𝑘+1(𝑋1, 𝑋4) ⊕ 𝐹2𝑘+2(𝑋1, 𝑋4) 

 𝐵2𝑘+1,2𝑘+2(𝑋3, 𝑋2) = 𝐹2𝑘+1(𝑋3, 𝑋2) ⊕ 𝐹2𝑘+2(𝑋3, 𝑋2) 

 𝐵′2𝑘+1,2𝑘+2(𝑋3, 𝑋4) = 𝐹2𝑘+1(𝑋3, 𝑋4) ⊕ 𝐹2𝑘+2(𝑋3, 𝑋4). 

 

By Remark 1, 𝐴2𝑘+2,2𝑘+3(𝑋1, 𝑋2) ⊕ 𝐴′2𝑘+1,2𝑘+2(𝑋1, 𝑋4)  can be decomposed into 4-cycles, 

similarly 𝐵2𝑘+1,2𝑘+2(𝑋3, 𝑋2) ⊕ 𝐵′2𝑘+1,2𝑘+2(𝑋3, 𝑋4)  can be decomposed in 4-cycles, we obtain the 

proof.   
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