

Decomposition Of Balanced Complete Bipartite Graphs Into Cycles Of Two Different Length

¹Jeevadoss S, ²Chitra V

Department of Applied Mathematics and Computational Sciences PSG College of Technology Coimbatore Tamil Nadu, INDIA. e-mail: jeevadoss@gmail.com

Department of Mathematics PSG Institute of Technology and Applied Research Coimbatore Tamil Nadu, INDIA e-mail: chitrabdu@gmail.com

We decomposing the balanced complete bipartite graph $K_{2n,2n}$ into C_4 's and C_{4n} 's. In particular, we find necessary and sufficient conditions for accomplishing this when $n \ge 2$, for $n \equiv 0 \pmod{2}$. As a consequence, we show that for nonnegative integers p and q, with $n \ge 2$, there exists a decomposition of the balanced complete bipartite graph $K_{2n,2n}$ into p copies of C_{2n} and q copies of C_4 if and only if $2np + 4q = 4n^2$, except when p is odd and n is even.

Keywords: Cycle, Complete bipartite graph, Graph Decomposition

1 Introduction

Unless stated otherwise all graphs considered here are finite, simple, and undirected. For the standard graph-theoretic the readers are referred to [1]. A cycle of length m is called m-cycle and it is denoted by C_m . Let K_m , I_m respectively denote a complete graph and an independent set on m vertices. $K_{m,n}$ denotes the complete bipartite graph with m and n vertices in the parts. A graph whose vertex set is partitioned into sets V_1, \ldots, V_m such that the edge set is $\bigcup_{i \neq j \in [m]} V_i \times V_j$ is a *complete m-partite graph*, denoted by K_{n_1,\ldots,n_m} when $|V_i| = n_i$ for all i. For any integer $\lambda > 0$, λG denotes the graph consisting of λ edge-disjoint copies of G. The complement of the graph G is denoted by \overline{G} . Let $(x_0x_1 \ldots x_{k-1}x_0)$ denote the cycle C_k with vertices $x_0, x_1, \ldots, x_{k-1}$ and edges $x_0x_1, x_1x_2, \ldots, x_{k-2}x_{k-1}, x_{k-1}x_0$. The λ -multiplication of G, denoted $G(\lambda)$, is the multigraph obtained from a graph G by replacing each edge with λ edges. For two graphs G and H, their *lexicographic product* or *wreath product* $G \otimes H$ has vertex set $V(G) \times V(H)$ with two vertices (g_1, h_1) and (g_2, h_2) adjacent whenever $g_1g_2 \in E(G)$ or $g_1 = g_2$ and $h_1h_2 \in E(H)$. The complement of the graph G is denoted by \overline{G} .

By a *decomposition* of a graph *G*, we mean a list of edge-disjoint subgraphs of *G* whose union is *G* (ignoring isolated vertices). For a graph *G*, if E(G) can be partitioned into $E_1, ..., E_k$ such that the subgraph induced by E_i is H_i , for all $i, 1 \le i \le k$, then we say that $H_1, ..., H_k$ *decompose G* and we write $G = H_1 \oplus ... \oplus H_k$, since $H_1, ..., H_k$ are edge-disjoint subgraphs of *G*. For $1 \le i \le k$, if $H_i \cong H$, we say that *G* has a *H*-decomposition. A cycle passing through all the vertices of *G* is called *hamilton cycle* of *G*. An *n*-regular graph *G* is said to have a *Hamilton cycle decomposition* if its edge set can be partitioned into n/2 Hamilton cycles when *n* is even. If *G* has a decomposition into *p* copies of H_1 and *q* copies of H_2 , then we say that *G* has a $\{pH_1, qH_2\}$ -decomposition. If such a decomposition exists for all values of *p* and *q* satisfying trivial necessary conditions, then we say that *G* has a $\{H_1, H_2\}_{\{p,q\}}$ -decomposition or *G* is *fully* $\{H_1, H_2\}$ -decomposable.

Study of $\{H_1, H_2\}_{\{p,q\}}$ -decomposition for graphs is not new. Chou et al. [2] proved that for a given triple (p, q, r) of nonnegative integers, G decompose into p copies of C_4 , q copies of C_6 , and rcopies of C_8 such that 4p + 6q + 8r = |E(G)| in the following two cases: (a) $G = K_{m,n}$ with m and n both even at least 4, except $K_{4,4}$, (b) G is obtained from $K_{n,n}$ with n odd by deleting a perfect matching. Chou and Fu [3] proved that the existence of $\{C_4, C_{2t}\}_{\{p,q\}}$ -decomposition of $K_{2u,2v}$, where $t/2 \le u, v < t$ when t even (resp., $(t+1)/2 \le u, v \le (3t-1)/2$ when t odd) implies such decomposition in $K_{2m,2n}$, where $m, n \ge t$ (resp., $m, n \ge (3t+1)/2$). Jeevadoss and Muthusamy [4] reduced the bounds in the sufficient conditions obtained by Chou and Fu [3] for the existence of $\{C_4, C_{2t}\}_{\{p,q\}}$ -decomposition of $K_{2m,2n}$, when t > 2.

In this paper, we study the existence of $\{C_4, C_{4n}\}_{\{p,q\}}$ -decomposition of $K_{2n,2n}$. In fact, we establish some necessary and sufficient conditions for the existence of $\{C_4, C_{4n}\}_{\{p,q\}}$ -decomposition of $K_{2n,2n}$.

Let $K_{n,n}$ be the complete bipartite graph with bipartition (X, Y), where $X = \{x_1, ..., x_n\}$ and $Y = \{y_1, ..., y_n\}$. For $0 \le i \le n - 1$, let $F_i(X, Y)$ denote the set $\{x_j y_{j+i} : j \in [n]\}$, where subscripts are taken modulo n. Clearly $F_i(X, Y)$ is a 1-factor of $K_{n,n}$, called the 1-factor of *distance i*. Also, $\bigcup_{i=0}^{n-1} F_i(X, Y) = K_{n,n}$. In a complete bipartite graph with bipartition (X, Y) with |X| = |Y|, an edge $x_i y_j$ is called an edge of *distance* j - i if $i \le j$, or n - (i - j), if i > j, from X to Y. (The same edge is said to be of *distance* i - j if $i \ge j$ or n - (i - j), if i < j, from Y to X.

Remark 1.1

- i. For $n \in \mathbb{N}$, let $K_{2n,2n}$ have partite sets $X_1 \cup X_3$ and $X_2 \cup X_4$, where $X_r = \{x_1^r, \dots, x_n^r\}$. For $0 \le i \le n-1$, let $F_i(X_r, X_s) = \{x_j^r x_{j+i}^s : j \in [n]\}$, where arithmetic in subscripts is taken modulo n. Note that the union of the sets $F_i(X_r, X_s)$ over all i and $(r, s) \in \{(1,2), (2,3), (3,4), (4,1)\}$ decomposes $K_{2n,2n}$.
- ii. For $k \in \{0, ..., n-1\}$ and $i \in \{1, 2, 3, 4\}$, the set $F_k(X_i, X_{i+1}) \cup F_{k+1}(X_i, X_{i+1})$ forms a 2-regular subgraph of $K_{2n,2n}$ consisting a cycle of length 2n.
- iii. For any positive integer n, the set $F_0(X_1, X_2) \cup F_0(X_2, X_3) \cup F_0(X_3, X_4) \cup F_1(X_4, X_1)$ forms a

Hamilton cycle of $K_{2n,2n}$.

- iv. $F_k(X_i, X_j) = F_{n-k}(X_j, X_i)$, where $0 \le k \le n 1$.
- v. For odd *n*, the set $F_{n-1}(X_1, X_2) \oplus F_0(X_2, X_3) \oplus F_{n-1}(X_3, X_4) \oplus F_0(X_4, X_1)$ forms a Hamilton cycle of $K_{2n,2n}$.
- vi. For even n, the set $F_{n-1}(X_1, X_2) \oplus F_0(X_2, X_3) \oplus F_n(X_3, X_4) \oplus F_0(X_4, X_1)$ forms a Hamilton cycle of $K_{2n,2n}$.
- vii. The edges of $F_{n-k}(X_1, X_2) \oplus F_k(X_2, X_3) \oplus F_{n-k}(X_3, X_4) \oplus F_k(X_4, X_1)$ forms a C_4 decomposition of $K_{2n,2n}$ where $0 \le k \le n-1$.
- viii. The edges of $F_j(X_1, X_2) \oplus F_{j+1}(X_1, X_2)$, can be decomposed into $P_{3,s}$ such that any two consecutive vertices $x_r^1, x_{r+1}^1, 1 \le r \le n$ serve as end vertices in exactly one component in the P_3 decomposition. Similarly the edges of $F_k(X_1, X_4) \oplus F_{k+1}(X_1, X_4)$, can be decomposed into $P_{3,s}$ such that any two consecutive vertices $x_r^1, x_{r+1}^1, 1 \le r \le n$, serve as end vertices in exactly one component in the P_3 decomposition, thus $(x_r^1 x_a^2 x_b^4 x_{r+1}^1)$ forms a four cycle. Thus one component in the P_3 decomposition, thus $(x_r^1 x_a^2 x_b^4 x_{r+1}^1)$ forms a four cycle. Thus $F_j(X_1, X_2) \oplus F_{j+1}(X_1, X_2) \oplus F_k(X_1, X_4) \oplus F_{k+1}(X_1, X_4)$ can be decomposed into 4-cycles. Also $F_j(X_3, X_2) \oplus F_{j+1}(X_3, X_2) \oplus F_k(X_3, X_4) \oplus F_{k+1}(X_3, X_4)$ can be decomposed into 4-cycles, where $0 \le j, k \le n 1$.

2 { C_4, C_{4n} }_{{p,q}-decomposition of $K_{2n,2n}$.

In this section we investigate the decompositions of $K_{2n,2n} - \alpha H$ into C_4 , where αH denotes the α edge-disjoint Hamilton cycles of $K_{2n,2n}$.

Theorem 2.1 For odd $n \ge 3$, the graph $K_{2n,2n} - H$ can be decomposed into 4-cycles. *Proof.* Without loss of generality, let

$$V(K_{2n,2n}) = (X_1 \cup X_3, X_2 \cup X_4),$$

$$E(K_{2n,2n} - H) = \bigcup_{k=0}^{n-1} (F_k(X_1, X_2) \oplus F_k(X_2, X_3) \oplus F_k(X_3, X_4) \oplus F_k(X_4, X_1)) \setminus H$$

where $H = F_{n-1}(X_1, X_2) \oplus F_0(X_2, X_3) \oplus F_{n-1}(X_3, X_4) \oplus F_0(X_4, X_1)$, is an Hamilton cycle of $K_{2n,2n}$.

$$K_{2n,2n} - H = \bigoplus_{k=0}^{\frac{n}{2}} \left[A_{2k,2k+1}(X_1, X_2) \bigoplus A'_{n-(2k+1),n-(2k+2)}(X_4, X_1) \right] \bigoplus_{k=0}^{\frac{n-3}{2}} \left[B_{n-(2k+1),n-(2k+2)}(X_2, X_3) \bigoplus B'_{2k,2k+1}(X_3, X_4) \right],$$

By Remark 1.1,

$$K_{2n,2n} - H = \bigoplus_{\substack{k=0\\k=0}}^{\frac{n-3}{2}} \left[A_{2k,2k+1}(X_1, X_2) \bigoplus A'_{2k+1,2k+2}(X_1, X_4) \right] \bigoplus_{\substack{k=0\\k=0}}^{\frac{n-3}{2}} \left[B_{2k+1,2k+2}(X_3, X_2) \bigoplus B'_{2k,2k+1}(X_3, X_4) \right],$$

where

$$A_{2k,2k+1}(X_1, X_2) = F_{2k}(X_1, X_2) \oplus F_{2k+1}(X_1, X_2)$$

$$A'_{2k+1,2k+2}(X_1, X_4) = F_{2k+1}(X_1, X_4) \oplus F_{2k+2}(X_1, X_4)$$

$$B_{2k+1,2k+2}(X_3, X_2) = F_{2k+1}(X_3, X_2) \oplus F_{2k+2}(X_3, X_2)$$

$$B'_{2k,2k+1}(X_3, X_4) = F_{2k}(X_3, X_4) \oplus F_{2k+1}(X_3, X_4).$$

By Remark 1.1, $A_{2k,2k+1}(X_1, X_2) \bigoplus A'_{2k+1,2k+2}(X_1, X_4)$ can be decomposed into 4-cycles, similarly $B_{2k+1,2k+2}(X_3, X_2) \bigoplus B'_{2k,2k+1}(X_3, X_4)$ can be decomposed in 4-cycles, we obtain the proof.

Theorem 2.2 For odd $n \ge 3$, odd $\alpha, 1 \le \alpha \le n$, the graph $K_{2n,2n} - \alpha H$ can be decomposed into 4-cycles.

Proof. Without loss of generality, let

$$V(K_{2n,2n}) = (X_1 \cup X_3, X_2 \cup X_4) \quad \text{where} X_i = \{x_1^i, x_2^i, \cdots, x_n^i\},$$
$$E(K_{2n,2n} - \alpha H) = \bigcup_{k=0}^{n-1} [F_k(X_1, X_2) \oplus F_k(X_2, X_3) \oplus F_k(X_3, X_4) \oplus F_k(X_4, X_1)] \setminus \bigcup_{p=0}^{\alpha-1} H_p,$$

where $H_p = F_{n+1-p}(X_1, X_2) \oplus F_p(X_2, X_3) \oplus F_{n-p}(X_3, X_4) \oplus F_p(X_4, X_1)$, for $0 \le p \le \alpha - 1$ are edge disjoint Hamilton cycles of $K_{2n,2n}$.

$$K_{2n,2n} - \alpha H = \bigoplus_{k=0}^{\frac{n-\alpha-2}{2}} \left[A_{2k+2,2k+3}(X_1, X_2) \bigoplus A'_{n-(2k+1),n-(2k+2)}(X_4, X_1) \right] \bigoplus_{k=0}^{\frac{n-\alpha-2}{2}} \left[B_{n-(2k+1),n-(2k+2)}(X_2, X_3) \bigoplus B'_{2k+1,2k+2}(X_3, X_4) \right].$$

By Remark 1.1,

$$K_{2n,2n} - \alpha H = \bigoplus_{k=0}^{\frac{n-\alpha-2}{2}} \left[A_{2k+2,2k+3}(X_1, X_2) \bigoplus A'_{2k+1,2k+2}(X_1, X_4) \right] \bigoplus_{k=0}^{\frac{n-\alpha-2}{2}} \left[B_{2k+1,2k+2}(X_3, X_2) \bigoplus B'_{2k+1,2k+2}(X_3, X_4) \right],$$

where

$$A_{2k+2,2k+3}(X_1, X_2) = F_{2k+2}(X_1, X_2) \oplus F_{2k+3}(X_1, X_2)$$

$$A'_{2k+1,2k+2}(X_1, X_4) = F_{2k+1}(X_1, X_4) \oplus F_{2k+2}(X_1, X_4)$$

$$B_{2k+1,2k+2}(X_3, X_2) = F_{2k+1}(X_3, X_2) \oplus F_{2k+2}(X_3, X_2)$$

$$B'_{2k+1,2k+2}(X_3, X_4) = F_{2k+1}(X_3, X_4) \oplus F_{2k+2}(X_3, X_4).$$

By Remark 1.1, $A_{2k+2,2k+3}(X_1, X_2) \bigoplus A'_{2k+1,2k+2}(X_1, X_4)$ can be decomposed into 4-cycles, similarly $B_{2k+1,2k+2}(X_3, X_2) \bigoplus B'_{2k+1,2k+2}(X_3, X_4)$ can be decomposed in 4-cycles, we obtain the proof. **Theorem 2.3** For odd $n \ge 3$, even $\alpha, 1 \le \alpha \le n$, the graph $K_{2n,2n} - \alpha H$ can be decomposed into 4-

cycles.

Proof. Without loss of generality,

Let
$$V(K_{2n,2n}) = (X_1 \cup X_3, X_2 \cup X_4)$$
 where $X_i = \{x_1^i, x_2^i, \dots, x_n^i\}$

For $\alpha < n-1$,

$$E(K_{2n,2n} - \alpha H) = \bigcup_{k=0}^{n-1} [F_k(X_1, X_2) \oplus F_k(X_2, X_3) \oplus F_k(X_3, X_4) \oplus F_k(X_4, X_1)] \setminus \bigcup_{p=0}^{\alpha-1} H_p,$$

where $H_p = F_{n-1+p}(X_1, X_2) \oplus F_{n-1-p}(X_2, X_3) \oplus F_{n-1-p}(X_3, X_4) \oplus F_{n-1+p}(X_4, X_1),$ for $0 \le p \le \alpha - 1$

1 are edge disjoint Hamilton cycles of $K_{2n,2n}$.

$$K_{2n,2n} - \alpha H = \bigoplus_{\substack{k=0\\ \frac{n-\alpha-5}{2}\\ \bigoplus \\ i=0}}^{\frac{n-\alpha-5}{2}} \left[A_{n-(2k+3),n-(2k+4)}(X_1,X_2) \oplus A'_{2k+3,2k+4}(X_1,X_4) \right] \oplus Y \oplus Z_{n-1}$$

For $\alpha = n - 1$,

$$E(K_{2n,2n} - \alpha H) = \bigcup_{k=0}^{n-1} [F_k(X_1, X_2) \oplus F_k(X_2, X_3) \oplus F_k(X_3, X_4) \oplus F_k(X_4, X_1)] \setminus [\bigcup_{p=0, p \neq \alpha-2}^{\alpha-1} H_p \oplus W],$$

where $H_p = F_{n-1+p}(X_1, X_2) \oplus F_{n-1-p}(X_2, X_3) \oplus F_{n-1-p}(X_3, X_4) \oplus F_{n-1+p}(X_4, X_1)$, for $0 \le p(\ne \alpha - 2) \le \alpha - 1$ are edge disjoint Hamilton cycles of $K_{2n,2n}$.

$$K_{2n,2n} - \alpha H = Z$$

where,

$$\begin{aligned} A_{n-(2k+3),n-(2k+4)}(X_1, X_2) &= F_{n-(2k+3)}(X_1, X_2) \oplus F_{n-(2k+4)}(X_1, X_2) \\ A'_{2k+3,2k+4}(X_1, X_4) &= F_{2k+3}(X_1, X_4) \oplus F_{2k+4}(X_1, X_4) \\ B_{n-(2k+3),n-(2k+4)}(X_3, X_2) &= F_{n-(2k+3)}(X_3, X_2) \oplus F_{n-(2k+4)}(X_3, X_2) \\ B'_{2k+3,2k+4}(X_3, X_4) &= F_{2k+3}(X_3, X_4) \oplus F_{2k+4}(X_3, X_4). \\ Y &= B_{0,n-1}(X_3, X_2) \oplus B'_{0,1}(X_3, X_4) \\ W &= F_{n-4}(X_1, X_2) \oplus F_0(X_2, X_3) \oplus F_0(X_3, X_4) \oplus F_{n-4}(X_4, X_1) \\ Z &= F_{n-2}(X_1, X_2) \oplus F_2(X_2, X_3) \oplus F_2(X_3, X_4) \oplus F_{n-2}(X_4, X_1) \end{aligned}$$

By Remark 1.1, $A_{n-(2k+3),n-(2k+4)}(X_1,X_2) \bigoplus A'_{2k+3,2k+4}(X_1,X_4)$ can be decomposed into 4-cycles, similarly $B_{n-(2k+3),n-(2k+4)}(X_3,X_2) \bigoplus B'_{2k+3,2k+4}(X_3,X_4)$, Y and Z can be decomposed in 4-cycles, W is an Hamilton cycle , we obtain the proof.

Theorem 2.4 For even $n \ge 4$, even α , $1 \le \alpha \le n$, the graph $K_{2n,2n} - \alpha H$ can be decomposed into 4-cycles.

Proof. Without loss of generality, Let

$$V(K_{2n,2n}) = (X_1 \cup X_3, X_2 \cup X_4), \text{ where } X_i = \{x_1^i, x_2^i, \cdots, x_n^i\},$$

$$E(K_{2n,2n} - \alpha H) = \bigcup_{k=0}^{n-1} [F_k(X_1, X_2) \oplus F_k(X_2, X_3) \oplus F_k(X_3, X_4) \oplus F_k(X_4, X_1)] \setminus \bigcup_{p=0}^{\alpha-1} H_p,$$

$$H_k = E_k = (X_1 - X_2) \oplus E_k(X_2 - X_3) \oplus E_k(X_2 - X_3) \oplus F_k(X_3 - X_4) = for \quad 0 \le n \le \alpha - 1 \text{ prod}$$

where $H_p = F_{n+1-p}(X_1, X_2) \oplus F_p(X_2, X_3) \oplus F_{n-p}(X_3, X_4) \oplus F_p(X_4, X_1)$, for $0 \le p \le \alpha - 1$ are edge disjoint Hamilton cycles of $K_{2n,2n}$.

$$K_{2n,2n} - \alpha H = \bigoplus_{\substack{k=0\\ \frac{n-\alpha-2}{2}\\ \bigoplus_{k=0}}}^{\frac{n-\alpha-2}{2}} \left[A_{2k+2,2k+3}(X_1,X_2) \bigoplus A'_{2k+1,2k+2}(X_1,X_4) \right] \bigoplus_{k=0}^{\frac{n-\alpha-2}{2}} \left[B_{2k+1,2k+2}(X_3,X_2) \bigoplus B'_{2k+1,2k+2}(X_3,X_4) \right],$$

where

$$A_{2k+2,2k+3}(X_1, X_2) = F_{2k+2}(X_1, X_2) \oplus F_{2k+3}(X_1, X_2)$$

$$A'_{2k+1,2k+2}(X_1, X_4) = F_{2k+1}(X_1, X_4) \oplus F_{2k+2}(X_1, X_4)$$

$$B_{2k+1,2k+2}(X_3, X_2) = F_{2k+1}(X_3, X_2) \oplus F_{2k+2}(X_3, X_2)$$

$$B'_{2k+1,2k+2}(X_3, X_4) = F_{2k+1}(X_3, X_4) \oplus F_{2k+2}(X_3, X_4).$$

By Remark 1, $A_{2k+2,2k+3}(X_1, X_2) \bigoplus A'_{2k+1,2k+2}(X_1, X_4)$ can be decomposed into 4-cycles, similarly $B_{2k+1,2k+2}(X_3, X_2) \bigoplus B'_{2k+1,2k+2}(X_3, X_4)$ can be decomposed in 4-cycles, we obtain the proof.

References

- 1. J.A. Bondy, U.R.S. Murty, Graph Theory with Applications, The Macmillan Press Ltd, New York (1976).
- 2. C.C. Chou, C.M. Fu, W.C. Huang, Decomposition of $K_{m,n}$ into short cycles, *Discrete Math.* 197/198 (1999) 195-203.
- 3. C.C. Chou, C.M. Fu, Decomposition of $K_{m,n}$ into 4-cycles and 2*t*-cycles, *J. Comb. Optim.* 14 (2007) 205-218.
- 4. S. Jeevadoss, A. Muthusamy, Sufficient condition for $\{C_4, C_{2t}\}$ decomposition of $K_{2m,2n}$ An improved bound, in: S. Arumugam and B. Smyth (Eds.), Combinatorial Algorithms, IWOCA 2012, *LNCS*, Springer-Verlag Berlin Heidelberg, Vol. 7643, (2012), pp.143-147.
- M. Šajna, Cycle decompositions III: complete graphs and fixed length cycles, J. Comb. Des. 10 (2002) 27-78.
- 6. D. Sotteau, Decomposition of $K_{m,n}$ ($K_{m,n}^*$) into cycles (circuits) of length 2k, J.Comb.Theory Ser. B 30 (1981) 75-81.