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Abstract. In this manuscript, we define 𝔻𝒞-weakly demicompact mappings; we discuss the existence of coincidence points in 

the turf of a restricted class of 𝔻𝒞-weakly demicompact mappings defined on cone metric spaces; as a consequence of the result 
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1  Introduction 

The notion of cone metric spaces is defined and discussed by Huang [9]; later, Abbas and Jungck[1] 

derived certain significant fixed point results, without using continuity. Azam, Kumar and Wang[4, 13, 18] 

are some others who studied and extended the theory further in this context. Wardowski[17] introduced 

the idea of ℋ-cone metric to estimate the distance among two sets in a cone metric space and proved a 

Nadler’s type of fixed point theorem. 

In 2013, Arshad and Ahmad[3] studied the concept of fixed points of multivalued mappings 

without normal cone by modifying the definition of Wardowski. The equivalence between the theorems 

of Arshad, Ahmad and Nadler is proved by Huang et al.[10]. In 2002, Branciari[5] introduced a integral 

type contractive condition for mappings on metric space and proved certain fixed point results. Khojastech 

et al.[12] distended the theory in the field of cone metric spaces with normal cone. The concepts like 

commutativity, compatibility, weakly compatibility and 𝑅 -weakly commutativity are defined and 

discussed (see [7, 11, 14, 15]). 

In this paper, we define a hybrid pair of mapping namely 𝔻𝒞-weakly demicompact mapping. As 

sequel we prove that any 𝔻𝒞-weakly demicompact mapping which satisfies a specified integral type of 

contractive condition has a coincidence point; in follow we authenticate the existence of a common fixed 

point for a pair of 𝔻𝒞-weakly demicompact mappings. Finally, we present an application of our core 

result. 
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2  Preliminaries 

 Let 𝐸 denotes the real Banach space and with zero element 𝜃. Let 𝑃 ∈ 𝒫(𝐸) − {𝜃}, then 𝑃 

is said to be a cone if   

   (C1) 𝑘𝜇 + 𝑙𝜈 ∈ 𝑃 ∀ 𝜇, 𝜈 ∈ 𝑃 and 𝑘, 𝑙 ∈ [0,∞);  

   (C2) 𝜃 is the only member in 𝑃 which has additive inverse in 𝑃.  

Let ⪯ be a partial order in 𝑃 defined by 𝜇 ⪯ 𝜈 if and only if 𝜈 − 𝜇 ∈ 𝑃. 𝜇 ≺ 𝜈 indicates 𝜇 ⪯

𝜈 but 𝜇 ≠ 𝜈. 𝜇 ≺≺ 𝜈 indicates 𝜈 − 𝜇 belongs to interior of 𝜇. 𝜇 is said to be normal if there exist 

𝑘 ≥ 0 such that ||𝜇|| ≤ 𝑘||𝜈|| ∀ 𝜇, 𝜈 ∈ 𝐸 with 𝜃 ⪯ 𝜇 ⪯ 𝜈; such a least positive number is said to be a 

normal constant. 

Definition 2.1 [9] A function 𝜎: 𝑆2 → 𝐸, is called as a cone metric if it satisfies:  

    (CM1) 𝜃 ⪯ 𝜎(𝑝, 𝑞) ∀ 𝑝, 𝑞 ∈ 𝑆;  

    (CM2) 𝜎(𝑝, 𝑞) = 𝜃 iff 𝑝 = 𝑞;  

    (CM3) 𝜎(𝑝, 𝑞) = 𝜎(𝑞, 𝑝) ∀ 𝑝, 𝑞 ∈ 𝑆;  

    (CM4) 𝜎(𝑝, 𝑞) ⪯ 𝜎(𝑝, 𝑟) + 𝜎(𝑟, 𝑞) ∀ 𝑝, 𝑞, 𝑟 ∈ 𝑆.  

In order to avoid ambiguity, we denote a cone metric space by 𝑆𝑐.  

Definition 2.2 [7] Let 𝐴 ≠ ∅ and 𝐵 ≠ ∅ be bounded closed subsets of a metric space 𝑆. Then 

Hausdorff metric is given by  

 ℋ(𝐴, 𝐵) = max{sup
𝑝∈𝐴

inf
𝑞∈𝐵

𝜎(𝑝, 𝑞), sup
𝑞∈𝐵

inf
𝑝∈𝐴

𝜎(𝑝, 𝑞)}. 

Definition 2.3 [3] Let 𝒞(𝑆) = {𝐴 ⊆ 𝑆/𝐴 is closed}. A map ℋ:𝒞(𝑆)2 → 𝐸 is said to be  

ℋ-cone metric on 𝒞(𝑆) if it satisfies    

    (HC1) 𝜃 ⪯ ℋ(𝐴, 𝐵)  ∀  𝐴, 𝐵 ∈ 𝒞(𝑆);  

    (HC2) ℋ(𝐴, 𝐵) = 𝜃 iff 𝐴 = 𝐵;  

    (HC3) ℋ(𝐴, 𝐵) = ℋ(𝐵, 𝐴)  ∀  𝐴, 𝐵 ∈ 𝒞(𝑆);  

    (HC4) ℋ(𝐴, 𝐵) ⪯ ℋ(𝐴, 𝐶) +ℋ(𝐶, 𝐵)  ∀  𝐴, 𝐵, 𝐶 ∈ 𝒞(𝑆);  

    (HC5)  If 𝐴, 𝐵 ∈ 𝒞(𝑆), 𝜃 ≺ 𝜖 ∈ 𝐸 with ℋ(𝐴, 𝐵) ≺ 𝜖, then for each 𝑎 ∈ 𝐴 there exists 

𝑏 ∈ 𝐵 such that 𝜎(𝑎, 𝑏) ≺ 𝜖.  

  

Let 𝑣1, 𝑣2 ∈ 𝐸 and 𝑣1 ≺ 𝑣2. Define  

 [𝑣1, 𝑣2] = {𝑣 ∈ 𝐸: 𝑐 = 𝜆𝑣2 + (1 − 𝜆)𝑣1, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝜆 ∈ [0,1]} 

 [𝑣1, 𝑣2) = {𝑣 ∈ 𝐸: 𝑐 = 𝜆𝑣2 + (1 − 𝜆)𝑣1, 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝜆 ∈ [0,1)} 

 The set {𝑣1 = 𝑢0, 𝑢1,⋯ , 𝑢𝑛 = 𝑣2} is said to be a partition for [𝑣1, 𝑣2] iff the sets {[𝑢𝑖−1, 𝑢𝑖)}𝑖=1
𝑛  are 

pairwise disjoint and [𝑣1, 𝑣2] = { ∪
𝑖=1

𝑛
[𝑢𝑖−1, 𝑢𝑖)} ∪ {𝑣2}. 

Let 𝑄 be a partition and 𝜙: [𝑣1, 𝑣2] → 𝑃 be an increasing function. Then  

 𝐿𝑛 = ∑
𝑛−1
𝑖=0 𝜙(𝑢𝑖)||𝑢𝑖 − 𝑢𝑖+1||   𝑎𝑛𝑑   𝑈𝑛 = ∑

𝑛−1
𝑖=0 𝜙(𝑢𝑖+1)||𝑢𝑖 − 𝑢𝑖+1|| 

are called as cone lower sum and cone upper sum respectively. (see [12]) 

Definition 2.4 [12] An increasing function 𝜙: [𝑣1, 𝑣2] → 𝑃 is said to be an integrable function simply, cone 

integrable function if  

 lim
𝑛→∞

𝐿𝑛 = 𝑈 = lim
𝑛→∞

𝑈𝑛 

where 𝑈 must be unique. The common value of 𝑈 is denoted by ∫
𝑣2
𝑣1
𝜙𝑑𝑃  

Definition 2.5 [11] Let 𝔻: 𝑆 → 𝔓(𝑆) and 𝒞: 𝑆 → 𝑆. A point 𝑝 ∈ 𝑆 is said to be   
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(i) a coincidence point of 𝔻 and 𝒞, if 𝒞𝑝 ∈ 𝔻𝑝.  

(ii) a common fixed point of 𝔻 and 𝒞, if 𝑝 = 𝒞𝑝 ∈ 𝔻𝑝.  

Definition 2.6 [2, 6, 16] Let 𝒞: 𝑆 → 𝑆 and 𝔻: 𝑆 → 𝒫(𝑆).   

(i) The self mapping 𝒞 is called as sequentially convergent if every sequence {𝑝𝑛} ∈ 𝑆, {𝒞𝑝𝑛} 

is convergent implies {𝑝𝑛} is convergent.  

(ii) The multivalued mapping 𝔻 is called as weakly demicompact if every sequence {𝑝𝑛} ∈ 𝑆 

such that 𝑝𝑛+1 ∈ 𝔻𝑝𝑛  and lim
𝑛→∞

𝜎(𝑝𝑛, 𝑝𝑛+1) = 𝜃 , having a convergent subsequence 

{𝑝𝑛𝑘}𝑘∈ℕ.  

(iii) The pair (𝔻, 𝒞) is called as weakly compatible if they commute at their coincidence point.  

Definition 2.7 [8] A sequence {𝑝𝑛} in 𝑆 is called as asymptotically regular if 𝑙𝑖𝑚
𝑛→∞

𝜎(𝑝𝑛+1, 𝑝𝑛) = 𝜃.   

3  Main results 

 Throughout this section, let 𝜙 be a nonvanishing self map on 𝑃 which is subadditive cone 

integrable for any [𝜇, 𝜈] ⊂ 𝑃 with 𝜃 ≺≺ ∫
𝜖

𝜃
𝜙𝑑𝑃, ∀ 𝜃 ≺ 𝜖. 

 

Definition 3.1 Let 𝒜 = 𝒫(𝑆) − ∅. A pair of mapping 𝔻: 𝑆 → 𝒜 and 𝒞: 𝑆 → 𝑆 is called as 𝔻𝒞-weakly 

demicompact if for every asymptotically regular sequence {𝒞𝑝𝑛} in 𝑆 with 𝒞𝑝𝑛+1 ∈ 𝔻𝑝𝑛, there exists 

a convergent subsequence.  

Example 3.2 Let𝐸 = {𝜇: [0,1] → ℝ| 𝜇 is continuous} and 𝑃 = {𝜇|0 ≤ 𝜇(𝑡) ∀ 𝑡 ∈ [0,1]}. Let 𝜎: [0,1)2 →

𝐸 be a function defined by 𝜎(𝑝, 𝑞) = |𝑝 − 𝑞|𝑒𝑡. Then by considering 𝐸 as a real Banach space with the 

normal cone 𝑃, 𝜎 is a cone metric on [0,1).Let ℋ:ℭ([0,1))2 → 𝐸 be a function defined as  

 ℋ(𝔻𝑝,𝔻𝑞) = ℋ𝑢(𝔻𝑝,𝔻𝑞)𝑒
𝑡, 

where ℋ𝑢 is the standard Hausdorff metric. 

Let 𝒞: [0,1) → [0,1)  and 𝔻: [0,1) → 𝒞([0,1))  be defined as 𝒞(𝑝) = sin 𝑝  and 𝔻(𝑝) =

[0, sin𝑝]. Let 𝑝0 ∈ [0,1). Choose a point 𝑝1 such that  

 𝒞(𝑝1) = sin𝑝1 ∈ [0, sin𝑝0] = 𝔻(𝑝0). 

which implies that 𝒞(𝑝1) ≤ sin 𝑝0. Again choose a point 𝑝2 such that  

 𝒞(𝑝2) = sin𝑝2 ∈ [0, sin𝑝1] = 𝔻(𝑝1). 

It follows that 𝒞(𝑝2) ≤ 𝒞(𝑝1). Proceeding like this we get a monotonically decreasing sequence ⋯ ≤

𝒞(𝑝𝑛) ≤ 𝒞(𝑝𝑛−1) ≤ ⋯ ≤ 𝒞(𝑝2) ≤ 𝒞(𝑝1) which is bounded below by 0 and hence lim
𝑛→∞

|𝒞(𝑝𝑛)| = 0. 

The sequence of the form {𝒞𝑝𝑛: 𝒞𝑝𝑛+1 ∈ 𝔻𝑝𝑛} is convergent and lim
𝑛→∞

𝜎(𝒞𝑝𝑛, 𝒞𝑝𝑛+1) = 𝜃. Hence the 

pair of mappings (𝔻, 𝒞) is 𝔻𝒞-weakly demicompact.  

Let Ψ be the class of all continuous self mappings on a cone 𝑃 that satisfies the following 

property   

a) Each 𝜓 ∈ Ψ is subadditive and sequentially convergent;  

b) 𝑝 ⪯ 𝑞 ⇒ 𝜓(𝑝) ⪯ 𝜓(𝑞) ∀ 𝜓 ∈ Ψ;  

c) 𝜓(𝑝) = 𝜃 iff 𝑝 = 𝜃 ∀ 𝜓 ∈ Ψ;  

d) 𝜓(𝑘𝑝) = 𝑘𝜓(𝑝) for some 𝑘 > 0 ∀ 𝜓 ∈ Ψ. 

Theorem 3.3  Let (𝔻, 𝒞) be a 𝔻𝒞 -weakly demicompact mapping such that 𝒞 is onto and 𝔻(𝑆) ⊆

𝒞(𝑆). Let ℋ be a ℋ-cone metric on 𝒞(𝑆) such that for some 𝜆 ∈ (0,1) and 𝜓 ∈ 𝛹, 

            𝜓(∫
ℋ(𝔻𝑝,𝔻𝑞)

𝜃
𝜙𝑑𝑃) ⪯ 𝜆𝜓 (∫

𝜎(𝒞𝑞,𝑟)

𝜃
𝜙𝑑𝑃)∀ 𝑝, 𝑞 ∈ 𝑆 and 𝑟 ∈ 𝔻𝑝,          (1) 
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then there exists 𝑝 ∈ 𝑆 such that 𝒞𝑝 ∈ 𝔻𝑝.  

Proof. Let 𝑝0 ∈ 𝑆 and 𝑞0 = 𝒞𝑝0. Since 𝒞 is onto, there exists 𝑝1 ∈ 𝑆 such that  

𝑞1 = 𝒞𝑝1 ∈ 𝔻𝑝0. Suppose 𝑞1 = 𝑞0, then 𝒞𝑝0 ∈ 𝔻𝑝0 as desired. 

If 𝑞1 ≠ 𝑞0, then 𝜃 ≺ 𝜎(𝑞1, 𝑞0). Suppose 𝜖 = ℋ(𝔻𝑝0, 𝔻𝑝1) + 𝜆𝜎(𝑞0, 𝑞1) where 𝜆 > 0, then 

we have ℋ(𝔻𝑝0, 𝔻𝑝1) ≺ 𝜖. But by (HC5), there exist 𝑝2 ∈ 𝑆 such that 𝑞2 = 𝒞𝑝2 ∈ 𝔻𝑝1, 𝜎(𝑞1, 𝑞2) ≺

𝜖. Thus we get that  

∫

𝜎(𝑞1,𝑞2)

𝜃

𝜙𝑑𝑃 ⪯ ∫

ℋ(𝔻𝑝0,𝔻𝑝1)+𝜆𝜎(𝑦0,𝑦1)

𝜃

𝜙𝑑𝑃 

                 ⪯ ∫

ℋ(𝔻𝑝0,𝔻𝑝1)

𝜃

𝜙𝑑𝑃 + ∫

𝜆𝜎(𝑞0,𝑞1)

𝜃

𝜙𝑑𝑃 

 Since 𝜓 is an increasing mapping, we have  

 𝜓 ( ∫

𝜎(𝑞1,𝑞2)

𝜃

𝜙𝑑𝑃) ⪯ 𝜓( ∫

ℋ(𝔻𝑝0,𝔻𝑝1)

𝜃

𝜙𝑑𝑃 + ∫

𝜆𝜎(𝑞0,𝑞1)

𝜃

𝜙𝑑𝑃) 

       ⪯ 𝜓( ∫

ℋ(𝔻𝑝0,𝔻𝑝1)

𝜃

𝜙𝑑𝑃)+ 𝜓( ∫

𝜆𝜎(𝑞0,𝑞1)

𝜃

𝜙𝑑𝑃)  

      ⪯ 𝜆𝜓( ∫

𝜎(𝒞𝑝1,𝒞𝑝1)

𝜃

𝜙𝑑𝑃)+ 𝜓( ∫

𝜆𝜎(𝑞0,𝑞1)

𝜃

𝜙𝑑𝑃) 

    𝜓 ( ∫

𝜎(𝑞1,𝑞2)

𝜃

𝜙𝑑𝑃) ⪯ 𝜓( ∫

𝜆𝜎(𝑞0,𝑞1)

𝜃

𝜙𝑑𝑃). 

 Now suppose 𝜖 = ℋ(𝔻𝑝1, 𝔻𝑝2) + 𝜆
2𝜎(𝑞0, 𝑞1) , then we have ℋ(𝔻𝑝1, 𝔻𝑝2) ≺ 𝜖 . Again by (HC5), 

there exists 𝑝3 ∈ 𝑆 so that 𝑞3 = 𝒞𝑝3 ∈ 𝔻𝑝2, 𝜎(𝑞2, 𝑞3) ≺ 𝜖. Analogous to the above argument it can 

be derived that  

𝜓( ∫

𝜎(𝑞2,𝑞3)

𝜃

𝜙𝑑𝑃) ⪯ 𝜓( ∫

𝜆2𝜎(𝑞0,𝑞1)

𝜃

𝜙𝑑𝑃) 

 Proceeding as above, we get 𝑞𝑛+1 = 𝒞𝑝𝑛+1 ∈ 𝔻𝑝𝑛 for some 𝑝𝑛+1 ∈ 𝑆 and  

𝜓( ∫

𝜎(𝑞𝑛,𝑞𝑛+1)

𝜃

𝜙𝑑𝑃) ⪯ 𝜓( ∫

𝜆𝑛𝜎(𝑞0,𝑞1)

𝜃

𝜙𝑑𝑃) 

 Letting 𝑛 → ∞ on both sides, we get  

lim
𝑛→∞

𝜓( ∫

𝜎(𝑞𝑛,𝑞𝑛+1)

𝜃

𝜙𝑑𝑃) ⪯ lim
𝑛→∞

𝜓( ∫

𝜆𝑛𝜎(𝑞0,𝑞1)

𝜃

𝜙𝑑𝑃) 

 As 𝜆 ∈ (0,1),  we have lim
𝑛→∞

∫
𝜆𝑛𝜎(𝑞0,𝑞1)

𝜃
𝜙𝑑𝑃 = 𝜃 . Also since 𝜓  is continuous, it follows that 

lim
𝑛→∞

𝜓(∫
𝜆𝑛𝜎(𝑞0,𝑞1)

𝜃
𝜙𝑑𝑃) = 𝜃 and therefore  
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lim
𝑛→∞

𝜓( ∫

𝜎(𝑞𝑛,𝑞𝑛+1)

𝜃

𝜙𝑑𝑃) = 𝜃. 

But lim
𝑛→∞

∫
𝜎(𝑞𝑛,𝑞𝑛+1)

𝜃
𝜙𝑑𝑃 = 𝜃, as 𝜓 is sequentially convergent. Thus we have lim

𝑛→∞
𝜎(𝑞𝑛, 𝑞𝑛+1) = 𝜃 . 

Now since the pair (𝔻, 𝒞) are 𝔻𝒞-weakly demicompact, there exist a convergent subsequence {𝑞𝑛𝑘} 

of {𝑞𝑛}. If we let lim
𝑘→∞

𝑞𝑛𝑘 = 𝑢, then there exist a point 𝑟 ∈ 𝑆 such that 𝒞𝑟 = 𝑢. 

Finally, we claim that 𝑟 is the required coincidence point. Now suppose 𝜖 = ℋ(𝔻𝑝𝑛𝑘−1, 𝔻𝑟) +

𝜆𝑛𝑘𝜎(𝑞0, 𝑞1), then ℋ(𝔻𝑝𝑛𝑘−1, 𝔻𝑟) ≺ 𝜖. By (HC5), there exists 𝑟𝑛𝑘 ∈ 𝔻𝑟 such that  

𝜎(𝒞𝑝𝑛𝑘 , 𝑟𝑛𝑘) ≺ ℋ(𝔻𝑝𝑛𝑘−1, 𝔻𝑟) + 𝜆
𝑛𝑘𝜎(𝑞0, 𝑞1). 

Thus we have  

∫

𝜎(𝒞𝑝𝑛𝑘 ,𝑟𝑛𝑘)

𝜃

𝜙𝑑𝑃 ⪯ ∫

ℋ(𝔻𝑝𝑛𝑘−1,𝔻𝑟)+𝜆
𝑛𝑘𝜎(𝑞0,𝑞1)

𝜃

𝜙𝑑𝑃 

⪯ ∫

ℋ(𝔻𝑝𝑛𝑘−1,𝔻𝑟)

𝜃

𝜙𝑑𝑃 + ∫

𝜆𝑛𝑘𝜎(𝑞0,𝑞1)

𝜃

𝜙𝑑𝑃 

 But since 𝜓 is increasing and subadditive, we get  

𝜓( ∫

𝜎(𝒞𝑝𝑛𝑘 ,𝑟𝑛𝑘)

𝜃

𝜙𝑑𝑃) ⪯ 𝜓( ∫

ℋ(𝔻𝑝𝑛𝑘−1,𝔻𝑟)

𝜃

𝜙𝑑𝑃)+ 𝜓( ∫

𝜆𝑛𝑘𝜎(𝑞0,𝑞1)

𝜃

𝜙𝑑𝑃). 

Then by (1), it follows that  

𝜓( ∫

𝜎(𝒞𝑝𝑛𝑘 ,𝑟𝑛𝑘)

𝜃

𝜙𝑑𝑃) ⪯ 𝜆𝜓( ∫

𝜎(𝒞𝑝𝑛𝑘 ,𝒞𝑟)

𝜃

𝜙𝑑𝑃)+ 𝜓( ∫

𝜆𝑛𝑘𝜎(𝑞0,𝑞1)

𝜃

𝜙𝑑𝑃). 

By taking limit 𝑘 → ∞ on both sides we get  

lim
𝑘→∞

𝜓( ∫

𝜎(𝒞𝑝𝑛𝑘 ,𝑟𝑛𝑘)

𝜃

𝜙𝑑𝑃) ⪯ 𝜆 lim
𝑘→∞

𝜓( ∫

𝜎(𝒞𝑟,𝒞𝑝𝑛𝑘)

𝜃

𝜙𝑑𝑃)+ lim
𝑘→∞

𝜓( ∫

𝜆𝑛𝑘𝜎(𝑞0,𝑞1)

𝜃

𝜙𝑑𝑃). 

 Since 𝜓 is continuous, 𝜆 ∈ (0,1), and lim
𝑘→∞

𝜎(𝒞𝑟, 𝒞𝑝𝑛𝑘) = 𝜃, we have  

    

lim
𝑘→∞

𝜓( ∫

𝜎(𝒞𝑟,𝒞𝑝𝑛𝑘)

𝜃

𝜙𝑑𝑃) = lim
𝑘→∞

𝜓( ∫

𝜆𝑛𝑘𝜎(𝑞0,𝑞1)

𝜃

𝜙𝑑𝑃) = 𝜃. 

Therefore, lim
𝑘→∞

𝜓(∫
𝜎(𝒞𝑝𝑛𝑘 ,𝑟𝑛𝑘)

𝜃
𝜙𝑑𝑃) = 𝜃, and as 𝜓 is sequentially convergent,  

lim
𝑘→∞

∫

𝜎(𝒞𝑝𝑛𝑘 ,𝑟𝑛𝑘)

𝜃

𝜙𝑑𝑃 = 𝜃. 

Thus it follows that lim
𝑛→∞

𝑟𝑛𝑘 = 𝑝. Now since {𝑟𝑛𝑘} is a sequence in 𝔻𝑟 and 𝔻𝑟 is closed, we have 𝑢 =
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𝒞𝑟 ∈ 𝔻𝑟 as desired. 

 

Example 3.4 Let 𝐸 = {𝜇: [0,1] → ℝ|𝜇 is continuous} 𝑎𝑛𝑑 𝑃 = {𝜇(𝑡)|0 ≤ 𝜇(𝑡)∀ 𝑡 ∈ [0,1]}. Let 

𝜎: (0,1)2 → 𝐸 be a function defined by 𝜎(𝑝, 𝑞) = |𝑝 − 𝑞|𝑒𝑡. Then by considering 𝐸 as a real Banach 

space with the normal cone 𝑃, it is easy to see that 𝜎 is a cone metric on (0,1). Let ℋ:ℭ((0,1))2 → 𝐸 

be a function defined as  

 ℋ(𝔻𝑝,𝔻𝑞) = ℋ𝑢(𝔻𝑝,𝔻𝑞)𝑒
𝑡, 

where ℋ𝑢 is the standard Hausdorff metric. 

 Let 𝔻: (0,1) → ℭ((0,1)) and 𝒞: (0,1) → (0,1) be the mappings defined by  

 𝔻(𝑝) = {
{
1

2
} if 𝑝 ≤

1

2

[
1

2
,
3

4
] if 𝑝 >

1

2

   𝑎𝑛𝑑   𝒞(𝑝) = 𝑝2  ∀  𝑝 ∈ (0,1). 

Then clearly, 𝒞 is onto and for every asymptotically regular sequence {𝒞𝑝𝑛} in (0,1) with 𝒞𝑝𝑛+1 ∈

𝔻𝑝𝑛 , 𝒞𝑝𝑛 ∈ [
1

2
,
3

4
] ∀ 𝑛. Thus there exists a subsequence {𝒞𝑝𝑛𝑘} of {𝒞𝑝𝑛} such that lim

𝑛→∞
|𝒞𝑝𝑛𝑘 −

𝑙| = 0, for some 𝑙 ∈ (0,1). Hence it follows that  

 lim
𝑛→∞

𝜎(𝒞𝑝𝑛𝑘 , 𝑙) = lim
𝑛→∞

|𝒞𝑝𝑛𝑘 − 𝑙|𝑒
𝑡 = 𝜃, 

which implies (𝔻, 𝒞) is 𝔻𝒞-weakly demicompact. Let 𝜙:𝑃 → 𝑃 be a mapping defined by 𝜙(𝑡) =

𝑡, then ∫
ℋ(𝔻𝑝,𝔻𝑞)

𝜃
𝜙𝑑𝑃 = 𝜃, as ℋ(𝔻𝑝,𝔻𝑞) = 𝜃  ∀  𝑝, 𝑞 ∈ (0,1). 𝜓 (∫

ℋ(𝔻𝑝,𝔻𝑞)

𝜃
𝜙𝑑𝑃) = 𝜃 ∀ 𝜓 ∈ Ψ. 

Since 𝜃 ⪯ 𝜎(𝒞𝑞, 𝑟) ∀ 𝑝, 𝑞 ∈ (0,1) and 𝑟 ∈ 𝔻𝑝, we have 𝜃 ⪯ ∫
𝜎(𝒞𝑞,𝑟)

𝜃
𝜙(𝑡)𝑑𝑡 ∀𝑝, 𝑞 ∈ (0,1) and 𝑟 ∈

𝔻𝑝. 

Now it follows that, for any 𝜓 ∈ Ψ and 𝜆 ∈ (0,1),  

 𝜃 ⪯ 𝜆𝜓(∫
𝜎(𝒞𝑞,𝑟)

𝜃
𝜙(𝑡)𝑑𝑡) ∀ 𝑝, 𝑞 ∈ (0,1) 𝑎𝑛𝑑 𝑟 ∈ 𝔻𝑝. 

Thus by Theorem 3.3, 𝔻 and 𝒞 has a coincidence point in (0,1). 

Here note that if we replace 𝒞 as  

 𝒞(𝑝) = {
𝑝 if  𝑝 ∈ (0,

1

4
)

𝑝+2

3
if  𝑝 ∈ [

1

4
, 1)

 

in the above example, then all the premises in Theorem 3.3, except the function 𝒞 to be onto holds 

whereas its inference do not hold.  

In follow we give an example to prove the necessity of a pair of mapping (𝔻, 𝒞) to be 𝔻𝒞 -weakly 

demicompact in Theorem 3.3. 

 

Example 3.5 Let 𝑆 = {0, ∑𝑛𝑘=1
1

𝑘
: 𝑛 = 1,2,3⋯ }. Let 𝐸, 𝑃, 𝑑 and ℋ be as in example 3.3. Let 𝔻: 𝑆 →

ℭ(𝑆) and 𝒞: 𝑆 → 𝑆 be the mappings defined by  

 𝔻(𝑝) =

{
 
 

 
 {0,

3

2
} if 𝑝 = 0

{1,
3

2
} if 𝑝 = 1

{0,1, ∑𝑛−1𝑘=1
1

𝑘
} if 𝑝 = ∑𝑛𝑘=1

1

𝑘
, 𝑛 = 2,3,4,⋯

 

and  
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 𝒞(𝑝) = {

1 if𝑝 = 0
0 if𝑝 = 1

𝑝 if𝑝 = ∑𝑛𝑘=1
1

𝑘
, 𝑛 = 2,3,4,⋯

 

Then clearly ℋ(𝔻𝑝,𝔻𝑞) = 𝜃 and 𝒞 is onto. Let (𝑝𝑛) = (∑
𝑛
𝑘=1

1

𝑘
) be a sequence, then {𝒞𝑝𝑛} is an 

asymptotically regular such that 𝒞𝑝𝑛 ∈ 𝔻𝑝𝑛+1. Clearly {𝒞𝑝𝑛} is an increasing sequence which is not 

bounded above and hence no subsequence of {𝒞𝑝𝑛} is convergent. Thus the pair of mapping (𝔻, 𝒞) is 

not 𝔻𝒞 -weakly demicompact. But for any 𝜓 ∈ Ψ  and 𝜙: 𝑃 → 𝑃,  we have 𝜓(∫
ℋ(𝔻𝑝,𝔻𝑞)

𝜃
) = 𝜃and 

since 𝜃 ⪯ 𝜎(𝒞𝑞, 𝑟) ∀ 𝑝, 𝑞 ∈ 𝑆 and 𝑟 ∈ 𝔻𝑝, we have  

𝜃 ⪯ ∫
𝜎(𝒞𝑞,𝑟)

𝜃
𝜙(𝑡)𝑑𝑡  ∀ 𝑝, 𝑞 ∈ 𝑆 and 𝑟 ∈ 𝔻𝑝. Thus for any 𝜓 ∈ Ψ and 𝜆 ∈ (0,1),  

𝜃 ⪯ 𝜆𝜓( ∫

𝜎(𝒞𝑞,𝑟)

𝜃

𝜙(𝑡)𝑑𝑡) ∀ 𝑝, 𝑞 ∈ 𝑆 𝑎𝑛𝑑 𝑟 ∈ 𝔻𝑝. 

Thus all the requirements in the hypothesis of Theorem 3.3 except the pair of mappings (𝔻, 𝒞) to be 

𝔻𝒞-weakly demicompact are satisfied and clearly its conclusion fails.  

 

Theorem 3.6  In Theorem 3.3 assume that (𝔻, 𝒞)  is weakly compatible and 𝒞𝒞𝑝 = 𝒞𝑝  for each 

coincidence point 𝑝 of 𝔻 and 𝒞, then 𝔻 and 𝒞 have a common fixed point. 

Proof. By Theorem 3.3, 𝔻 and 𝒞 have a point 𝑟 ∈ 𝑆 such that 𝑢 = 𝒞𝑟 ∈ 𝔻𝑟 and hence 

𝒞𝑟 ∈ 𝒞(𝔻𝑟). As (𝔻, 𝒞) is weakly compatible, we have 𝒞(𝔻𝑟) = 𝔻(𝒞𝑟) and therefore  

𝒞𝑢 ∈ 𝔻(𝒞𝑟) = 𝔻𝑢. But since 𝑟 ∈ 𝑆, we have 𝒞𝑢 = 𝒞𝒞𝑟 = 𝒞𝑟 = 𝑢 as desired. 

 

Corollary 3.7  Let (𝔻, 𝒞) be a pair of 𝔻𝒞-weakly demicompact mappings such that 𝒞 is onto. 

Suppose there exists a ℋ-cone metric on 𝒞(𝑆) and 𝜆 ∈ (0,1) such that  

      ∫ 𝜙𝑑𝑃
ℋ(𝔻𝑝,𝔻𝑞)

𝜃
⪯ 𝜆 ∫

𝜎(𝒞𝑞,𝑟)

𝜃
𝜙𝑑𝑃 , ∀ 𝑝, 𝑞 ∈ 𝑆 and 𝑟 ∈ 𝔻𝑝.                (2)  

Further if (𝔻, 𝒞) is weakly compatible and 𝒞𝒞𝑝 = 𝒞𝑝 for each coincidence point 𝑝 of 𝔻 and 𝒞, 

then 𝔻 and 𝒞 have a common fixed point in 𝑆.  

Proof. The proof follows trivially if we let 𝜓(𝑝) = 𝑝 in Theorem 3.6. 

 

Corollary 3.8  Let 𝔻: 𝑆 → 𝒞(𝑆) be a weakly demicompact set valued mapping. If there exists ℋ-cone 

metric on 𝒞(𝑆) and 𝜆 ∈ (0,1) such that  

 ∫
ℋ(𝔻𝑝,𝔻𝑞)

𝜃
𝜙𝑑𝑃 ⪯ 𝜆∫

𝜎(𝑞,𝑟)

𝜃
𝜙𝑑𝑃 , ∀ 𝑝, 𝑞 ∈ 𝑆 and 𝑟 ∈ 𝔻𝑝, (3) 

 then 𝔻 have a fixed point in 𝑆.  

Proof. If we let 𝒞(𝑝) = 𝑝, then the proof follows from Corollary 3.7. 

 

4  Application 

        Here, we use Corollary 3.8 to prove the existence of solutions for a set of Fredholm type integral 

inclusions. First let us fix some notations. Let ℬ = {𝑓: [𝑎1, 𝑎2] → ℝ | 𝑓 is continuous} and ℂ𝐵be the 

collection of all nonempty closed and bounded subsets of ℬ.  

       Let 𝐺 = {𝑔1, 𝑔2, 𝑔3, ⋯ , 𝑔𝑛}. Then clearly 𝐺 be an element of ℂ𝐵. Let 𝔾: [𝑎1, 𝑎2] → ℂ𝐵 be a 
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map defined by 𝔾(𝑡) = 𝐺. Let 𝑚: [𝑎1, 𝑎2] × ℝ → ℝ be a map that satisfies |∫
𝑎2
𝑎1
𝑚(𝑠, 𝑥(𝑠))𝑑𝑠| < 𝑎2 −

𝑎1 and  

 |𝑚(𝑠, 𝑥(𝑠))𝑔𝑖(𝑡) − 𝑚(𝑠, 𝑦(𝑠))𝑔𝑗(𝑡)| ≤ |𝑦(𝑠) − 𝑢(𝑠)|max{|𝑔𝑖(𝑡)|, |𝑔𝑗(𝑡)|} (4) 

 for all 𝑡 ∈ [𝑎1, 𝑎2] and 1 ≤ 𝑖, 𝑗 ≤ 𝑛, where 𝑢(𝑡) ∈ 𝑓(𝑡) + ∫
𝑎2
𝑎1
𝑚(𝑠, 𝑥(𝑠))𝐺(𝑡)𝑑𝑠.  

Let 𝑀𝑖 = sup
𝑎1≤𝑡≤𝑎2

𝑔𝑖(𝑡) and 𝑀 = max
1≤𝑖≤𝑛

𝑀𝑖. Let 𝑓(𝑡) ∈ ℬ and  

 𝑥(𝑡) ∈ 𝑓(𝑡) + ∫
𝑎2
𝑎1
𝑚(𝑠, 𝑥(𝑠))𝐺(𝑡)𝑑𝑠,    𝑡 ∈ [𝑎1, 𝑎2] (5) 

 be a Fredholm type integral inclusion. 

Let 𝑆 = 𝑠𝑝𝑎𝑛{𝑓(𝑡), 𝑔1(𝑡), 𝑔2(𝑡), 𝑔3(𝑡),⋯ , 𝑔𝑛(𝑡)}  and 𝐸  be the set of all real valued 

continuous functions on [0,1]. Let  

 𝑃 = {𝜇(𝑡): 0 ≤ 𝜇(𝑡) ∀ 𝑡 ∈ [0,1]} 

and Let 𝜎: 𝑆2 → 𝐸 be a mapping defined by  

 𝜎(𝑓, 𝑔) = ( sup
𝑡∈[𝑎,𝑏]

|𝑓(𝑡) − 𝑔(𝑡)|) 𝑒𝑡 ∀ 𝑓, 𝑔 ∈ 𝑆. 

Then by considering 𝐸 as a real Banach space with the normal cone 𝑃, it is easy to see that 𝜎 is a cone 

metric on 𝑆. Now we prove a theorem which gives a sufficient condition for the existence of a solution of 

(5). 

 

Theorem 4.1 If (𝑎2 − 𝑎1)𝑀 < 1, then the Fredholm type integral inclusion (5) has atleast one solution 

in 𝑆. 

Proof. Let 𝔻: 𝑆 → 𝒞(𝑆) be defined by  

 𝔻𝑥(𝑡) = {𝑢(𝑡) ∈ 𝑆 | 𝑢(𝑡) ∈ 𝑓(𝑡) + ∫
𝑏

𝑎
𝑚(𝑠, 𝑥(𝑠))𝐺(𝑡)𝑑𝑠}. 

Let {𝑥𝑛(𝑡)} be an asymptotically regular sequence in 𝑆 such that 𝑥𝑛(𝑡) ∈ 𝔻𝑥𝑛+1(𝑡) and let 

𝑟𝑛 = |∫
𝑎2
𝑎1
𝑚(𝑠, 𝑥𝑛(𝑠))𝑑𝑠|. Then clearly the sequence {𝑟𝑛} ∈ ℝ is bounded and hence there must 

exist a convergent subsequence {𝑟𝑛𝑘} which converges to 𝑙(say). Now consider  

 𝜎(𝑥𝑛𝑘−1(𝑡), 𝑓(𝑡) + 𝑀𝑙) = ( sup
𝑡∈[𝑎1,𝑎2]

|𝑓(𝑡) + ∫
𝑎2
𝑎1
𝑚(𝑠, 𝑥𝑛(𝑠))𝑔𝑖𝑑𝑠 − 𝑓(𝑡) − 𝑀𝑙|) 𝑒

𝑡 

Then lim
𝑘→∞

𝜎(𝑥𝑛𝑘−1(𝑡), 𝑓(𝑡) + 𝑀𝑙) = 𝜃 and hence 𝔻 is weakly demicompact. Here note that to prove 

the existence of a solution for the integral inclusion (5), it is enough to show that 𝔻 has a fixed point. 

Let ℋ:ℭ(𝑆)2 → 𝐸 be a mapping defined by  

 ℋ(𝔻𝑥,𝔻𝑦) = 𝐻𝑢(𝔻𝑥,𝔻𝑦)𝑒
𝑡, 

where ℋ𝑢 is the usual Hausdorff metric. Let 𝑣(𝑡) ∈ 𝔻𝑥(𝑡) and 𝑧(𝑡) ∈ 𝔻𝑦(𝑡), then  

𝑣(𝑡) = 𝑓(𝑡) + ∫
𝑎2
𝑎1
𝑚(𝑠, 𝑥(𝑠))𝑔𝑖(𝑡)𝑑𝑠  and 𝑧(𝑡) = 𝑓(𝑡) + ∫

𝑎2
𝑎1
𝑚(𝑠, 𝑦(𝑠))𝑔𝑗(𝑡)𝑑𝑠  for some 𝑖, 𝑗 . Now 

for all 𝑡 ∈ [𝑎1, 𝑎2],  

|𝑣(𝑡) − 𝑧(𝑡)| = | ∫

𝑎2

𝑎1

𝑚(𝑠, 𝑥(𝑠))𝑔𝑖𝑑𝑠 − ∫

𝑎2

𝑎1

𝑚(𝑠, 𝑦(𝑠))𝑔𝑗𝑑𝑠| 

≤ ∫

𝑎2

𝑎1

|𝑚(𝑠, 𝑥(𝑠))𝑔𝑖 −𝑚(𝑠, 𝑦(𝑠))𝑔𝑗|𝑑𝑠 
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≤ (𝑎2 − 𝑎1)|𝑦(𝑠) − 𝑢(𝑠)|max{|𝑔𝑖(𝑡)|, |𝑔𝑗(𝑡)|} 

   ≤ sup
𝑎1≤𝑠≤𝑎2

|𝑦(𝑠) − 𝑢(𝑠)|(𝑎2 − 𝑎1)𝑀 

 Thus it follows that 𝜎(𝑣(𝑡), 𝑧(𝑡)) ⪯ (𝑎2 − 𝑎1)𝜎(𝑦(𝑡), 𝑢(𝑡))𝑀 . Similarly, we can prove that 

ℋ(𝑥(𝑡), 𝑦(𝑡)) ⪯ (𝑎2 − 𝑎1)𝜎(𝑦(𝑡), 𝑢(𝑡))𝑀 where 𝑢(𝑡) ∈ 𝔻𝑥(𝑡). Now if we let 𝜙(𝑥) = 𝑥 in (3), then 

ℋ(𝑥, 𝑦) ⪯ 𝜆𝜎(𝑦, 𝑢)  where 𝑢 ∈ 𝔻𝑥 . Thus it is easy to see that 𝔻 has a fixed point by using (𝑎2 −

𝑎1)𝑀 < 1 and Corollary 3.8.  
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